Research papers

Use of Sentinel-2 for forest classification in Mediterranean environments


Spatially-explicit information on forest composition provides valuable information to fulfil scientific, ecological and management objectives and to monitor multiple changes in forest ecosystems. The recently developed Sentinel-2 (S2) satellite imagery holds great potential for improving the classification of forest types at medium-large scales due to the concurrent availability of multispectral bands with high spatial resolution and quick revisit time. In this study, we tested the ability of S2 for forest type mapping in a Mediterranean environment. Three operational S2 images covering different phenological periods (winter, spring, summer) were processed and analyzed. Ten 10 m and 20 m bands available from S2 and four vegetation indices (VIs) were used to evaluate the ability of S2 to discriminate forest categories (conifer, broadleaved and mixed forests) and four forest types (beech forests; mixed spruce-fir forests; chestnut forests; mixed oak forests). We found that a single S2 image acquired in summer cannot discriminate neither the considered forest categories nor the forest types and therefore multitemporal images collected at different phenological periods are required. The best configuration yielded an accuracy > 83% in all considered forest types. We conclude that S2 can represent an effective option for repeated forest monitoring and mapping.


Forest Classification; European Forest Types; Multispectral satellite imagery; Jeffries-Matusita (J-M) distance test; Random Forest

Full Text:




Adelabu, S., Mutanga, O., Adam, E., Cho, M.A., 2013. Exploiting machine learning algo- rithms for tree species classification in a semiarid woodland using RapidEye image. J. Appl. Remote. Sens. 7 (1) (073480–1–073480–13).

Baillarin S.J., Meygret A., Dechoz C., Petrucci B., Lacherade S., Tremas T., Isola C., Martimort P. Spoto F. 2012 - Sentinel-2 level 1 products and image processing performances. IEEE International Geoscience and Remote Sensing Symposium, 7003-7006.

Bajocco S., Raparelli E., Patriarca F., Di Matteo G., Nardi P., Perini L., Salvati L., Mugnozza G.S.,2013 - Exploring forest infrastructures equipment through multivariate analysis: complementarities, gaps and overlaps in the Mediterranean basin. Annals of Silvicultural Research 37(1):1-6. doi: 10.12899/asr-774.

Barbati A., Marchetti M., Chirici G., Corona P. 2014 - European forest types and forest Europe SFM indicators: tools for monitoring progress on forest biodiversity conservation. Forest Ecology and Management 321: 145-157.

Bartholomé E., Belward A.S. 2005 - GLC2000: A new approach to global land cover mapping from Earth observation data. International Journal of Remote Sensing 26: 1959–1977.

Breiman L. 2001 - Random forests. Machine Learning, 45(1): 5–32.

Chianucci F. 2016 – A note on estimation canopy cover from digital cover and hemispherical photography. Silva Fennica 50, doi: 10.14214/sf.1518

Chianucci F., Cutini A. 2013 - Estimation of canopy properties in deciduous forests with digital hemispherical and cover photography. Agricultural and Forest Meteorology 168: 130-139.

Chianucci F., Disperati L., Guzzi D., Bianchini D., Nardino V., Lastri C., Rindinella A., Corona P. 2016 - Estimation of canopy attributes in beech forests using true colour digital images from a small fixed-wing UAV. International Journal of Applied Earth Observation and Geoinformation 47: 60-68.

Chianucci, F., Puletti, N., Venturi, E., Cutini, A. and Chiavetta, U. 2014. Photographic assessment of overstory and understory leaf area index in beech forests under different management regimes in Central Italy. Forestry Studies, 61(1), pp.27-34.

Cinnirella S., Magnani F., Saracino A., Borghetti M. 2002 - Response of a mature Pinus laricio plantation to a three-year restriction of water supply: structural and functional acclimation to drought. Tree Physiology 22(1): 21-30.

Congalton R. G. 1991 - A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment 37: 35–46.

Davi H., Soudani K., Deckx T., Dufrene E., Le Dantec V., Francois, C. 2006 - Estimation of forest leaf area index from SPOT imagery using NDVI distribution over forest stands. International Journal of Remote Sensing 27: 885–902.

Fassnacht F.E., Latifi, H., Stereńczak K., Modzelewska A., Lefsky M., Waser L.T., Straub C., Ghosh A. 2016 - Review of studies on tree species classification from remotely sensed data. Remote Sensing of Environment 186: 64-87.

Feddema J.J., Oleson K.W., Bonan G.B., Mearns L.O., Buja L.E., Meehl G.A., Washington W.M. 2005 - The importance of land-cover change in simulating future climates. Science 310: 1674–1678.

Foody G. M., Boyd D. S., Cutler M. E. 2003 - Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions. Remote sensing of environment 85(4): 463-474.

Gao X, Huete A.R., Ni W., Miura, T. 2000 - Optical-biophysical relationships of vegetation spectra without background contamination. Remote Sensing of Environment 74: 609–620.

Hansen M.C., DeFries R.S., Townshend J.R., Sohlberg R. 2000 - Global land cover classification at 1 km spatial resolution using a classification tree approach. International Journal of Remote Sensing, 21(6-7): 1331-1364.

Hill M.J. 2013 - Vegetation index suites as indicators of vegetation state in grassland and savanna: An analysis with simulated SENTINEL 2 data for a North American transect. Remote Sensing of Environment 137: 94-111.

Hirose K., Osaki, M., Takeda, T., Kashimura O., Ohki, T., Segah H., Gao Y., Evri, M. 2016 - Contribution of Hyperspectral Applications to Tropical Peatland Ecosystem Monitoring. Tropical Peatland Ecosystems (pp. 421-431). Springer Japan.

Immitzer, M., Atzberger, C., Koukal, T., 2012. Tree species classification with random Forest using very high spatial resolution 8-Band WorldView-2 satellite data. Remote

Sens. 4 (9), 2661–2693.

Immitzer M., Vuolo F., Atzberger C. 2016 - First experience with sentinel-2 data for crop and tree species classifications in Central Europe. Remote Sensing 8(3): 166.

Laurin G.V., Liesenberg V., Chen, Q., Guerriero, L. Del Frate, F., Bartolini, A., Coomes D., Wilebore, B., Lindsell, J., Valentini, R. 2013 - Optical and SAR sensor synergies for forest and land cover mapping in a tropical site in West Africa. International Journal of Applied Earth Observation and Geoinformation 21: 7-16.

Laurin G.V., Puletti N., Hawthorne W, Liesenberg V., Corona P. Papale D., Chen Q., Valentini R. 2016 - Discrimination of tropical forest types, dominant species, and mapping of functional guilds by hyperspectral and simulated multispectral Sentinel-2 data. Remote Sensing of Environment 176: 163-176.

Liaw A., Wiener M. 2002 - Classification and regression by randomForest. R news 2, no. 3:18-22.

Loveland, T.R., Merchant J.W., Brown J.F., Ohlen D.O., Reed B.C., Olson P., Hutchinson J. 1995 - Map supplement: Seasonal land-cover regions of the United States. Annals of the American Association of Geographers 85: 339–355.

Maselli F., Moriondo M., Chiesi M., Chirici G., Puletti N., Barbati A., Corona P. 2009 - Evaluating the effects of environmental changes on the Gross Primary Production of Italian forests. Remote Sensing, 1(4): 1108-1124.

Moore, M.M., Bauer, M.E., 1990. Classification of forest vegetation in North-Central Min- nesota using Landsat multispectral scanner and thematic mapper data. For. Sci. 36 (2), 330–342.

Mutanga O., Skidmore A.K. 2004 - Narrow band vegetation indices overcome the saturation problem in biomass estimation. International Journal of Remote Sensing 25: 3999-4014.

Nogueira E.M., Yanai A.M., Fonseca F.O., Fearnside P.M. 2015 - Carbon stock loss from deforestation through 2013 in Brazilian Amazonia. Global change biology 21: 1271-1292.

Omruuzun F., Baskurt D.O., Daglayan H., Cetin Y.Y. 2015 - Utilizing hyperspectral remote sensing imagery for afforestation planning of partially covered areas. In SPIE Remote Sensing (pp. 96432N-96432N). International Society for Optics and Photonics.

Petropoulos G.P., Kalaitzidis C., Vadrevu K.P. 2012 - Support vector machines and object-based classification for obtaining land-use/cover cartography from Hyperion hyperspectral imagery. Computers, Geosciences, 41: 99-107.

Pignatti S., Cavalli R.M., Cuomo V., Fusilli L., Pascucci S., Poscolieri M., Santini F. 2009 - Evaluating Hyperion capability for land cover mapping in a fragmented ecosystem: Pollino National Park, Italy. Remote Sensing of Environment 113(3): 622-634.

Puletti N., Camarretta N., Corona P. 2016 - Evaluating EO1-Hyperion capability for mapping conifer and broadleaved forests. European Journal of Remote Sensing 49: 157-169.

R Core Team 2017 - R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL

Richards J.A., Jia X. 1999 - Remote sensing digital imaging analysis: an introduction. (3rd ed.). Berlin, Springer.

Sellers P.J. 1985 - Canopy reflectance, photosynthesis and transpiration. International Journal of Remote Sensing 6: 1335–1372.

Sellers P.J., Dickinson R.E., Randall D.A., Betts A.K., Hall F.G., Berry J.A., Collatz G.J., Denning A.S., Mooney H.A., Nobre C.A., Sato N. 1997 - Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science 275: 502–509.

Sophie B., Pierre D. 2009 - GlobCover 2009 Products Description and Validation Report European Space Agency: Paris, France, 201

Thenkabail P.S, Smith R.B., De Pauw E. 2000 - Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sensing of Environment 71: 158–182.

Thimonier A., Sedivy I., Schleppi P. 2010 - Estimating leaf area index in different types of mature forest stands in Switzerland: a comparison of methods. European Journal of Forest Research 129: 543-562.

Todd S.W, Hoffer R.M., Milchunas D.G. 1998 - Biomass estimation on grazed and ungrazed rangelands using spectral indices. International Journal of Remote sensing, 19: 427–438.

Trumbore S., Brando P., Hartmann H. 2015 - Forest health and global change. Science 349: 814-818.

Turner P.D., Cohen W.B., Kennedy R.E., Fassnacht K.S., Riggs J.M. 1999 - Relationships between leaf area index and Landsat TM spectral vegetation indices across three temperate zone sites. Remote Sensing of Environment 70: 52–68.

Vaiopoulos A.D., Karantzalos K. 2016 - Pansharpening on the Narrow Vnir and SWIR Spectral Bands of SENTINEL-2. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 723-730.

Vizzarri M., Chiavetta U., Chirici G., Garfì V., Bastrup-Birk A., Marchetti M. 2014 - Comparing multisource harmonized forest types mapping: A case study from central Italy. iForest 8: 59-66. doi: 10.3832/ifor1133-007

Waser, L.T., Küchler, M., Jütte, K., Stampfer, T., 2014. Evaluating the potential of World- View-2 data to classify tree species and different levels of ash mortality. Remote Sens. 6 (5), 4515–4545.

Copyright (c) 2017 Nicola Puletti, Francesco Chianucci, Cristiano Castaldi

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

All texts reported in and all materials directly downloadable from this page are licensed under a Creative Commons Attribution 4.0 International License.