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Tarasco E., Oreste M., Li X., Liu Q. — Infectivity of Mediterranean native Entomopathogenic Nematodes (Steinerne-
matidae and Heterorhabditidae) from natural habitats in relation to temperature.

The infectious activity of 15 Steinernema and Heterorbabditis strains of Entomopathogenic Nematodes (EPNs),
belonging to 5 species (Steznernema feltiae, S. affine, S. apuliae, S. ichnusae and H. bacteriophora) collected from natural
habitats (meadows, coasts and woods) in Southern Italy was compared in laboratory bioassays against Galleria
mellonella larvae. Infectivity was determined by 2 larval mortality rate assays in relation to different temperature values.
In the first experiment the percentage of larval mortality was recorded after a 72-hr exposure period to the EPNs
Infective Juveniles (Is) at 6 temperatures between 10 and 35°C, at intervals of 5°C, using IJs in aqueous suspension.
The second bioassay was performed to compare the infectivity at 3 relatively low temperature values (6-10-14°C), using
IJs in 2 different suspensions (aqueous and gel); the percentage of larval mortality was recorded every 72 hrs for 12 days
after exposure to IJs. In the first experiment S. feltiae, S. ichnusae and S. affine strains showed the best performances at
temperature values 10, 15, 20 and 25°C, while H. bacteriophora and S. apuliae showed the best results at 30 and 35°C. In
the second test S. feltiae, S. ichnusae and S. affine strains demonstrated a better cold-infectivity (at 6-10-14°C) than H.
bacteriophora and S. apuliae strains. IJs in the water suspension killed the Galleria larvae quicker than those in the gel.

The gel suspension keeps nematodes more safe and active than the water one.

KEY WORDS: Steinernema feltiae, S. affine, S. ichnusae, S. apuliae, Heterorbabditis bacteriophora, Mediterranean

areas, bioassay.

INTRODUCTION

Entomopathogenic nematodes (EPNs) (Steinernema-
tidae and Heterorhabditidae) are obligate parasites of
insects (POINAR, 1990) and received great attention as
potential biological control agents. Their infectious activity
varies with species and strains and it is affected by abiotic
and biotic factors, especially temperature (Kava, 1977;
MOLYNEUX, 1985, 1986; BLACKSHAW & NEWELL, 1987;
GRIFFIN ef al., 1989; KUNG et al., 1991; GRIFFIN &
DOWNES, 1991; TARASCO, 1997). Temperature influences
the nematodes infectivity as well as their survival, mobility,
development and reproduction (MOLYNEUX, 1983; SIMONS
& VAN DER SCHAAF, 1986; KAYA, 1990; ZERVOS ¢f al., 1991;
MASON & HOMINICK, 1995) and it is one of the most
important factors limiting their success (GRIFFIN, 1993).
Low temperatures (DOLMANS, 1983; RUTHERFORD et al.,
1987; GEORGIS & GAUGLER, 1991) as well as high ones
(RAO et al., 1971) may, in fact, restrict their use. It is known
that temperatures below 0 °C and above 40 °C are lethal to
most nematodes (ULU & SUSURLUK, 2014), although the
lethal effect of temperature depends on exposure time
(KOPPENHOFER, 2000). Entomopathogenic nematode
species have defined thermal niches (GREWAL e al., 1994).
Some species are warm-adapted while others are adapted
to cooler environments (HOMINICK & BRISCOE, 1990;
WRIGHT, 1992; GREWAL ef al., 1994).

According to a “bio-rational approach” for selecting
microbial control agents (YEO et al., 2003), selection of
EPN strains have to be based not only on their intrinsic
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virulence to the target host revealed by laboratory
bioassays, but also on their ability to operate over the range
of abiotic conditions that they could find in the agro-
ecosystem. It is necessary, in fact, to select strains that
combine the best characteristics for killing the target insects
(high virulence against target organisms) and their ability to
persist and infect in the environment in which the pest is
occurring.

The purpose of this study is to compare the effects of
temperature on infectious activity of 15 indigenous Italian
EPN strains, recovered from natural habitats (TARASCO &
TRIGGIANI, 1997; TARASCO ef al., 2015) and comprising 2
species actually isolated only in Italy, determining their
thermal niche for optimum infectivity and testing their
activity at low temperatures (cold-infectivity). This strain
characterization may contribute to select the EPNs for
testing in field assays against forest or agricultural pests in
relation to different environmental conditions.

MATERIALS AND METHODS

NEMATODES

The 15 isolates of EPNs, belonging to Steznernema feltiae
Filipjev, 1934 (7 strains: ItS-MSA3, ItS-MF1, ItS-LE1, ItS-
CZ19, 1tS-CZ23, ItS-TG4, 1tS-G16), S. affine (Bovien,
1937) (4 strains: 1tS-CZ10, 1tS-QU3, 1tS-ST12, ItS-LP3), .
ichnusae Tarasco, Mra ek, Nguyen & Triggiani, 2008 (2
strains: ItS-SAR4 and ItS-SAR16) H. bacteriophora Poinar,
1976 (1 strain: ItH-C6) and S. apuliae Triggiani, Mra ek &
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Reid, 2004 (1 strains: ItS-LD3) (Table 1), were collected
using the “Galleria baiting technique” (Bedding and
Akhurst, 1975) during a soil survey in different habitats in
Ttaly (TARASCO & TRIGGIANI, L.C.; TARASCO e al., 2015).

Nematodes were cultured in last-instar Galleria
mellonella L. (Lepidoptera, Pyralidae) larvae at a
temperature of 22°C. To obtain fresh infective juveniles
(IJs), 10 wax worms on a 100x10 mm Petri dish with one
90 mm filter paper were treated with ca. 2,000 IJs in 1.5 ml
of tap water. Two weeks after the treatment, wax worms
were put on modified White traps (White, 1927) for the
recovery of new generations of IJs. Collected IJs were kept
at 8°C and used within 10 days after harvesting.

INFECTIVITY BIOASSAYS

Infectivity comparison at different temperatures

Plastic boxes (95 x 32 mm) filled with 40 g of sterilized
peat (75% degree of humidity) were inoculated with 1,000
IJs in 1 ml of tap water. Each box received 10 G. mzellonella
final instar larvae (100 IJs/larva). There were 3 replicates
for each treatment and 3 boxes without nematodes as
control. Temperatures ranged between 10°C and 35°C, at
intervals of 5°C. The bioassays were repeated 3 times.
Larval mortality was recorded after 72-hr of exposure to
IJs. Afterwards the dead larvae were removed from the
boxes, rinsed in tap water and dissected to determine
effective nematode infection.

Cold-infectivity and comparison between water
and gel suspension

Petri dishes (90x15 mm) with one 85 mm filter paper
were inoculated with 1,000 IJs in 1 ml of tap water or gel
(Idrosorb SR 2002 - Nigem® - was used, an acrylic
polymer of high molecular weight, which jellified by
absorbing water). Each dish received 10 G. mzellonella (100
IJs/larva). There were 3 blocks of 5 replications at 3
different temperature values (6-10-14°C). Dishes were kept
in a container (15x32x40 cm) and wrapped with 2 black
plastic bags to minimize desiccation. Larval mortality was
recorded every 72 hrs for 12 days after exposure to IJs. The
dead larvae were removed from Petri dishes, rinsed in tap
water and dissected to verify the nematode infection.

CALCULATION

Data were pooled and analyzed using a general linear
model procedure (ANOVA - analysis of variance) and
significant differences among means were separated by

Table 1 — Characteristics of the sites with native Italian EPNs.
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HSD Tukey’s test (Statistix 9.0, 2008). All comparisons
were made at 0.05 level of significance.

RESULTS

INFECTIVITY COMPARISON AT DIFFERENT TEMPERATURES
All nematode isolates were able to kill the hosts and no

mortality was observed in any of the control treatments.

— 10°C: Steinernema feltiae ItS-LE1 gave the best result
(26% of larval mortality); other 6 S. feltiae strains (ItS-
MSA3, ItS-G16, ItS-CZ19, 1tS-CZ23, 1tS-TG4 and ItS-
MF1) followed with percentage values between 16%
and 8%. Steinernema ichnusae 1tS-SAR4 and ItS-
SAR16, S. apuliae 1tS-LD3, the S. affine strains (ItS-
ST12, 1tS-QU3, 1tS-LP3 and 1tS-CZ10) and H.
bacteriophora 1tH-C6 were statistically different causing
very low larval mortality (0-4%) (Fig. I, 1).

— 15°C: Steinernema feltiae 1tS-CZ19 produced the best
larval mortality percentage (64%), followed by 6 S.
feltiae (ItS-CZ23, 1tS-G16, ItS-MF1, ItS-LE1, ItS-TG4,
ItS-MSA3) and S. affine 1tS-QU3 with percentages of
larval mortality between 30% and 48%. Steinernema
ichnusae (both strains), S. affine (ItS-ST12, ItS-LP3 and
1tS-CZ10), and S. apuliae 1tS-LD3 gave lower
percentages (8-24%) while no larval mortality occurred
with H. bacteriophora ItH-C6 (Fig. 1, 2).

— 20°C: All Steinernema strains caused high larval mortality
percentages (> 80%), except for S. ichnusae 1tS-SAR4
(74%), S. affine 1tS-ST12 (68%) and S. apuliae 1tS-1.D3
(which killed a percentage of Galleria larvae
approximately of 60%), while H. bacteriophora ItH-C6
showed the lowest larval mortality value (33 %) (Fig. II, 1).

— 25°C: Almost all steinernematids controlled about 90-
100% of Galleria larvae while H. bacteriophora, S.
apuliae and S. affine 1tS-QUS3 killed around 80% (Fig.
11, 2).

Temperature - 30°C: Heterorhabditis bacteriophora gave
the highest larval mortality percentage (98%) not
statistically different from S. apuliae (88%); the other
Steinernema strains followed with different larval mortality
percentages between 60% and 78% (Fig. 111, 1).

— 35°C: Heterorhabditis bacteriophora presented the
highest larval mortality percentage (58 %) followed by S.
apuliae (44%); S. feltiae, S. ichnusae and S. affine strains
were less effective with low larval mortality percentages

(4-20%) (Fig. 11, 2).

Strain Locality mas.l. Time Habitat Soil texture pH  Org. Cont.
S. feltiae 1tS-LE1 Tricase (LE) 50 Oct 97 Meadows Silty loam 7.4 0.11
S. feltiae TtS-MF1 Martina E. (TA) 350 Mar 98 Oak Silty loam 7.3 1.41
S. feltiae 1tS-CZ19 Giamberga (CS) 800 May 98 Pine Sandy loam 6.8 1.63
S. feltiae 1tS-CZ23 Lago Cecita (CS) 1100 May 98 Pine Sandy loam 6.8 3.4
S. feltiae 1tS-G16 Gravina (BA) 380 Mar 99 Pine Silty loam 7.2 2.2
S. feltiae 1tS-MSA3 M.S.Angelo (FG) 790 Dec 99 Meadows Silt 7.4 375
S. feltiae TtS-TG4 Torre G. (BR) 20 Jan 00 Swamp Sandy loam 8 3.5
S. affine 1tS-ST12 Santeramo (BA) 400 Apr 98 Oak Silty loam 7.7 3.25
S. affine ItS-CZ10 S. Paolo Al (CS) 800 May 98 Oak Clay loam 7.4 3.16
S. affine 1tS-QU3 Quasano (BA) 150 Dec 99 Oak Silty loam 8 2.9
S. affine ItS-LP3 Lagopesole (PZ) 700 Jun 00 Oak Silt 6.9 3.6
S. ichnusae ItS-SAR4 Platamona (SS) 10 Jun 00 Sea coast Sand 8.2 2.7
S. ichnusae TtS-SAR16 Tempio Pausania 250 Apr 09 Oak Sandy loam 7.0 3.2
H. bacteriophora TtH-C6 Castellaneta (TA) 50 Sep 96 Pine Sand 7.8 0.97
S. apuliae 1tS-1LD3 Metaponto (MT) 50 Oct 96 Pine Sand 7.9 0.34
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Figure I — Infectivity comparison among 15 Italian EPN strains:
percentage mortality of G. mellonella larvae following 72 hrs of
exposure to IJs at 10°C (1) and 15°C (2). Bars with the same let-
ter are not significantly different (P < 0.05).

Figure IIT — Infectivity comparison among 15 Italian EPN
strains: percentage mortality of G. mellonella larvae following 72
hrs of exposure to IJs at 30°C (1) and 35°C (2). Bars with the
same letter are not significantly different (P < 0.05).

Figure II - Infectivity comparison among 15 Italian EPN strains:
percentage mortality of G. mellonella larvae following 72 hrs of
exposure to IJs at 20°C (1) and 25°C (2). Bars with the same let-
ter are not significantly different (P < 0.05).

COLD-INFECTIVITY AND COMPARISON BETWEEN WATER

AND GEL SUSPENSION
No mortality was observed in any of the control

treatments.

— 6°C, water suspension: Larval mortality reached a
maximum percentage of >70% with . feltiae 1tS-G16
and 1tS-CZ19 and S. affine 1tS-LP3, after 12 days.
Steinernema apuliae and H. bacteriophora presented the
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strains: percentage mortality of G. mellonella larvae following 3-
6-9-12 days of exposure to IJs at 6°C in water (1) and gel (2) sus-
pension.

lowest values with 5% and 8% respectively, after 12
days. Other strains killed about 45 to 64% of Galleria
larvae. Considering the test period, there was a quite
constant increase in larval mortality during the 12 days
for all the strains (Fig. IV, 1).

— 6°C, gel suspension: larval mortality caused by IJs in gel
reached lower values in comparison to the IJs in water
suspension. S. affine 1tS-LP3 showed the highest
percentage (59%) after 12 days; other . feltiae, S.
ichnusae and S. affine strains had lower percentages of
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34-51% while S. apuliae and H. bacteriophora killed 4-
5% of Galleria larvae. All the strains reached the
maximum larval mortality percentage after 12 days with
a major increment during the 9" and the 12% day (Fig.
1V, 2).

— 10°C, water suspension: All the strains killed almost
100% of the Galleria larvae after 12 days, except for .
apuliae (3.5%) and H. bacteriophora (12.5%). The best
increase in larval mortality was obtained between the 3
and the 9" day (Fig. V, 1).

— 10°C, gel suspension: All the strains controlled about
100% of the Galleria larvae after 12 days, except for H.
bacteriophora (21%) and S. apuliae (5%). The best
increase in larval mortality was seen between the 3™ and
the 9" day, as well in the water suspension (Fig. V, 2).

— 14°C, water suspension: All the strains killed 100% of
the Galleria larvae after 12 days, except H. bacteriophora
(70%) and S. apuliae (10%). The greatest increase in
larval mortality was registered between the 3™ and the
6™ day (Fig. VI, 1).

— 14°C, gel suspension: All strains killed almost 100% of
the Galleria larvae after 12 days, except S. affine ItS-
QU3 (70%), H. bacteriophora (32%) and S. apuliae
(7%). The best increase in larval mortality was obtained
between the 3" and the 9" day (Fig. VI, 2).

DISCUSSIONS AND CONCLUSIONS

The most important results of this paper concern the
infectivity performances of the endemic species S. apuliae
and S. ichnusae; the infectious behavior at different
temperatures of S. ichnusae is quite similar to the other 2
steinernematids (S. feltiae and S. affine), while S. apuliae
showed a completely different behavior, close to the
heterorhabditid strain.

The data obtained from the experiments show that,
although the Galleria larvae are susceptible to each strain
tested, there are wide differences in the pathogenicity of
these nematodes at different temperature values.
Significant differences exist among the EPN species while
similarities and differences occur among isolates of the
same species. However, temperature has a direct effect on
their infectivity. The data related to S. feltiae, S. affine and
H. bacteriophora agree with previous researches. MA et al.
(2013) tested the tolerance of thirty-two EPN strains from
Northern China to heat, cold and desiccation and they
found it differed significantly among and within species.
MORTON & GARCIA DEL PINO (2009) found great
variability among and within species considering the
environmental tolerance of S. feltiae and H. bacteriophora
strains to heat, desiccation, hypoxia and the effect of
temperature on infectivity and reproduction and nematode
migration in sand columns. Also MUKUKA et al. (2010) in
their work showed a high variability among strains of H.
bacteriophora, H. indica Poinar, Karunakar & David 1992
and H. megidis Poinar, Jackson & Klein, 1987 considering
the heat tolerance.

The thermal preference of EPN strains seems to be
correlated with the geographical origin of strains (MASON
& HOMINICK, 1995; ULU & SUSURLUK, 2014) although
some authors do not completely agree with this
assumption. MUKUKA ez al. (2010) showed that the
influence of the strain origins on their heat tolerance is less
important since the soil temperatures have much lower
variability than air temperatures. GREWAL ef al. (1994)
stated that each nematode species has a well known
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Figure VI — Cold-infectivity comparison among 15 Italian EPN
strains: percentage mortality of G. mellonella larvae following 3-
6-9-12 days of exposure to IJs at 14°C in water (1) and gel (2)
suspension.

thermal niche which is not affected by climatic conditions.
Our results from the first experiment indicate that S.
feltiae, S. ichnusae and S. affine strains are more effective at
10, 15, 20 and 25°C than S. apuliae and H. bacteriophora.
Also, regarding the best pathogenic behavior, strains of .
feltiae performed better than the others at 10 and 15°C,
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but at 20 and 25°C temperatures there are no differences
between S. feltiae, S. ichnusae and S. affine strains. S. apuliae
and above all H. bacteriophora gave better results than the
other species at 30 and 35°C. Significant differences
among the strains for each nematode species were also
found (S. feltiae, S. ichnusae and S. affine) especially at low
temperatures. Considering the sites of collection, these
Ttalian strains showed a correlation between the thermal
preference and their geographical origin: Steinernema
apuliae 1tS-L.D3 and H. bacteriophora 1tH-C6 were
collected in see coast habitats and resulted as warm-
adapted nematodes, while the other steinernematids
collected in different inner zones showed, in addition to a
wider distribution, even greater thermal range with also a
quite good adaptation for lower temperatures. The findings
on the temperature preference of S. feltize and H.
bacteriophora match with the published literature
(MOLYNEUX, 1986; WRIGHT, 1992; GRIFFIN, 1993; LONG et
al., 2000; HAZIR et al., 2001) while data on S. affine, and
above all §. ichnusae and S. apuliae represent a contribution
to the knowledge of their infectious behavior in relation to
temperature variations.

The most significant findings are those related to the
second experiment on cold-infectivity: S. feltiae, S. ichnusae
and S. affine strains gave the best results, with significant
differences in comparison to S. apuliae and H.
bacteriophora which killed a low number of Galleria larvae.
High cold-infectivity (10-15°C) of S. feltzae against Cydia
splendana (Hibner) and Curculio elephas Gyll. was found
also by KARAGOZ et al. (2009), while H. bacteriophora was
the most effective at 20 and 25°C. LACEY et al. (2006)
showed that S. feltiae was more effective in controlling the
codling moth in apple and pear orchards during the cold
seasons than the less cold-active species such as S.
carpocapsae (Weiser, 1955). Numerous researches showed
that S. krausser is efficient at low temperature (from 6 to
10°C) (LONG et al., 2000) particularly in controlling the
black vine weevil Otiorbynchus sulcatus Fabricious while
some other species (S. carpocapsae, S. feltiae and H. megidis)
have not shown satisfying efficiency (LONG ez al., 2000;
WILLMOTT et al., 2002; HAUKELAND, 2007). BROWN e al.
(1996) studied the cold tolerance of steinernematid and
heterorhabditid nematodes and they found that S. feltiae
had the lower lethal temperature and the higher survival
after prolonged freezing at -4 degrees.

Regarding nematode suspension, the pathogenic data
showed that nematodes in gel suspension killed larvae
more slowly than those in water suspension at each
temperature value. Gel was more resistant to dehydration
than water and released nematodes more slowly; this means
that gel suspensions “keep” the nematodes safe and active
longer than water suspension, confirming results obtained
by TRIGGIANT & TARASCO (2000a). The type of suspension,
like the temperature variation, is related to the pathogenic
behavior of the nematodes.
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