INTRODUCTION

There are 24 species of mulberry (Morus spp., Moraceae) and one subspecies, with at least 100 varieties (QIN et al., 2012). Mulberry is widespread in many regions from the tropics to the sub-arctic and from sea level to altitudes as high as 4000 m (MACHII et al., 2000; QIN et al., 2012). Morus alba L. is distributed all over the world for breeding silkworm (QIN et al., 2012). During the time of the Byzantine Emperor, two Byzantine priests were brought silkworms and seeds of mulberry hiding in bamboo tubes from China to Istanbul in 552 AD. This was the beginning of the cultivation of mulberries and silkworms in the Byzantine territory (HAUSSIG, 2001; TEZCAN, 2014). Silk production and the silk trade had very important roles between the 16th and 19th centuries (TEZCAN, 2014). Silk production lost its importance after the First World War in Turkey (YILDIRIM, 2013) and mulberry orchards abandoned and destroyed. Since that time mulberries are grown for fruit production rather than silkworm breeding in Turkey like in most European countries (ERCISLI, 2004; GERASOPOULOS & STAVROULAKIS, 1997). Ninety nine percentage of the mulberries grown in Turkey are M. alba, 3% are M. rubra L. and 2% are M. nigra L. (ERCISLI, 2004). Mulberry fruit production in 2014 was 74,600 tons and 3.751 tons were exported (ANONYMOUS, 2015). In Turkey commonly cultivated mulberry species are Morus alba L., M. nigra L., and M. rubra L (Moraceae). Mulberry leaves are used for sericulture. In this study, scale pests of mulberry trees were investigated mainly in Ankara and other regions in Turkey. Eight scale insect species namely Ceroplastes japonicus Green, C. rusci (L.), Neopulvinaria innumerabilis (Rathvon), Parthenoecium corni (Bouché) (Coccidae), Pseudaulacaspis pentagona Targioni-Tozzetti (Diaspididae), Phenacoccus aceris (Signoret), Planococcus ficus (Signoret) and Pseudococcus comstocki (Kuwana) (Pseudococcidae) were found on the Morus spp. P. pentagona was the most common and important pest species of the mulberry trees in research area. Populations of C. japonicus, N. innumerabilis, and P. comstocki are found at very high levels in some local gardens.

KEY WORDS: Morus spp., pest, Ceroplastes japonicus, Planococcus ficus, Pseudococcus comstocki.

RESULT AND DISCUSSION

Mulberry products are also important for timber, medicines, and ornamental plantings and therefore have important ecological values (QIN et al., 2012). Certain diseases and pests, including scale insects, have limited the quality and productivity of mulberries in China, India, Pakistan and Turkey (PELLIZZARI et al., 2012; SAHITO et al., 2012; VIJAYA KUMARI 2014; MOHAMMED et al., 2016). In India, pink hibiscus mealybug, Maconellicoccus hirsutus Green (Hemiptera: Pseudococcidae) is a major pest of mulberry. Feeding damage results in crinkling and distortion of the leaves and stunted growth in the apical shoot resulting in malformation. These symptoms are called Tukra disease and cause losses of 30-50% (VIJAYA KUMARI, 2014). In Turkey Pseudaulacaspis pentagona Targioni Tozzetti (Hemiptera: Diaspididae) and other pests of mulberry were recorded by several authors (BODENHEIMER, 1958; KAYDAN et al. 2013; UYGUN et al. 2013; MOHAMMED et al., 2016). The aim of the study is to identify the scale insect pests on mulberry trees in some parts of Turkey.

MATERIAL AND METHODS

Scale insects on mulberry were collected at irregular intervals mainly in Ankara and other cities in Turkey. Specimens were slide mounted for light microscopy using the method of KOSZTARAB & KOZÁR (1988). Identification was made according to KOSZTARAB & KOZÁR (1988), HOEDSMON (1994), WILLIAMS (2004), MILLER & DAVIDSON (2005), FAYKO & KOZÁR (2012). Slides and dry material are stored at the Ankara University, Faculty of Agriculture, Department of Plant Protection, Turkey.

In this study, eight scale insects were detected as pests in mulberry trees, mainly in Ankara and other provinces in

1 Original scientific contribution presented and discussed at XIV International Symposium on Scale Insect Studies, Catania-Italy, 13-16 June 2016.
Turkey (Table 1). P. pentagona is the main pest (Fig. I, 2, 5). Although it has been called the “white peach scale” in many parts of the World (Kosztarab & Kozár, 1988), because of its importance on mulberry, it is called the “mulberry scale” in Turkey (Keyder, 1956; Uygun et al., 2013). Bodenheimer (1958) reported that after the Independent War of Turkey, infestations of P. pentagona were so heavy that many mulberry and peach trees died, especially in the Bursa provinces, which was the main production area of fruit and silkworms. The species continues to be an important pest on peach, mulberry and ornamental plants in Turkey (Kiroğlu 1981; Erkiliç & Uygun, 1995; Kaydan et al., 2013; Mohammd et al., 2016). Brown soft scale (Parthenolecanium corni) (Bouché) (Fig. I, 3) is a common species but Neopulvinaria innumerabilis (Rathvon) (Fig. I, 1) has large populations on mulberry in some localities. N. innumerabilis could become a serious pest for mulberries in Ankara. The wax scales (Ceroplastes rusci (L.) and C. japonicus (Green)) have high infestations on mulberry in Antalya, Bolu and Istanbul respectively. They were recorded on mulberry in previous studies in Turkey (Ülgentürk et al., 2008; Ülgentürk et al., 2013). Three mealybugs Phenacoccus aceris (Signoret) (Fig. I, 4), Planococcus fuscus (Signoret) and Pseudococcus comstocki (Kuwana) (Fig. I, 6) are also found on mulberry. The first two mealybugs are widely distributed species but they rarely cause harmful effects on mulberry. P.comstocki on the other hand was observed to produce heavy infestations on ornamental mulberries in Kızılcabamam (Ankara). It causes unsightly appearance, gall formation on young twigs, and drying of some branches in district Kızılcabamam (Ankara) (Fig. I, 4). Pellizzari et al. (2012), reported P. comstocki as a notorious pest of fruit trees and ornamentals particularly on Morus spp., Catalpa spp. (Binoniacae), in the countries where it was accidentally introduced. This mealybug was first reported on M. alba and Vitis vinifera L. (Vitaceae) in East Anatolia, Turkey by Kaydan & Kozár (2010). Ataş & Kaydan (2015) demonstrated that P. comstocki populations were affected differently depending on the mulberry host species and by different temperature regimes. They showed that M. nigra is more susceptible to the mealybug than M. alba regardless of the temperature.

Qin et al. (2012) pointed out that with increased interest in preventing deterioration of the environment there should be renewed interest in the use of mulberries in China to counteract such important environmental issues as desertification, salinization and soil erosion. Because the mulberry is important in so many ways in Turkey, we also suggest that it should continue to be encouraged in this country as well. Unfortunately, control strategies for managing scale insect pests on mulberry are inadequate and cause undo harm to the environment. Integrated pest management (IPM) strategies using a suite of control systems comprising integration of physical, chemical, and biological control will allow healthy growth of mulberries without serious degradation of the environment. However, implementation of IPM requires detailed knowledge of the life history, host preferences, natural enemies, and physical requirements of each pest species. This research provides some of this information, but much more is needed.

REFERENCES

Table 1 – Scale insects and localities on mulberry in Turkey.

<table>
<thead>
<tr>
<th>Families</th>
<th>Species</th>
<th>Localities</th>
</tr>
</thead>
</table>

Cocidae

Neopulvinaria innumerabilis (Rathvon)

Parthenolecanium corni (Bouché)

Diaspididae

- *Pseudaulacaspis pentagona* (Signoret)

Pseudococcus comstocki (Kuwana)

Fig I – Neopulvinaria innumerabilis (1), Pseudaulacaspis pentagona (2, 5), Parthenolecanium corni (3), Phenacoccus aceris (4) and Pseudococcus comstocki (6) on mulberry in Turkey.

Kosztarab M., Kozar F., 1988 – Scale insect of Central Europe. Dr W. Junk Publishers, 455 pp

Teczan M., 2014 – The Iranian Branch ofthe Silkroad and the prevention of Silk trade by Iran. - International Periodical for The Languages, Literature and History of Turkish 8/5: 577-594.

