Articles

QTL analysis for yield-related traits under different water regimes in maize


Abstract


Drought is one of the most essential factors influencing maize yield. Improving maize varieties with drought tolerance by using marker-assisted or genomic selection requires more understanding of the genetic basis of yield-related traits under different water regimes. In the present study, 213 F2:3 families of the cross of H082183 (drought-tolerant) × Lv28 (drought susceptible) were phenotyped with five yield-related traits under four well-watered and six drought environments for two years. Quantitative trait loci analysis identified 133 significant QTLs (94 QTLs for ear traits and 39 QTLs for kernel traits) based on single environment analysis. The joint-environment analysis detected 25 QTLs under well-watered environments (eight QTLs for ear length, eight for ear diameter, one for ear weight, two for kernel weight per ear, and six for 100-kernel weight), and nine QTLs under water-stressed environments (two QTLs for ear length, three for ear diameter, one for ear weight, one for kernel weight, and two for 100-kernel weight). Among these joint-environment QTLs, one common QTL (qEL5) was stably identified at both of the water regimes. Meanwhile, two main-effect QTLs were detected in the well-watered environments,
i.e. qEL10 for ear length and qHKW2 for 100-kernel weight. Also, qED8, qEW8, and qKW8 were found to be located in the same interval of Chr. 8. Similarly, qEL4s and qKW4s were found to be located in the same interval under water-stressed environments. These genomic regions could be candidate targets for further fine mapping and marker-assisted breeding in maize.

Keywords

Maize, QTL, ear-related trait, kernel-related trait, drought

Full Text:

PDF





Maydica - A journal devoted to maize and allied species

ISSN: 2279-8013