Soil respiration rate in summer maize field under different soil tillage and straw application

Han Huifang¹, Ning Tangyuan¹, Li Zengjia¹*, Cao Hongming¹

¹State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, 271018, P.R. China
*Corresponding author: E-mail: hhf@sdau.edu.cn

Abstract
Demanding for food security and current situation of global warming give a high and strict request to North China Plain in food production and inhibition of agricultural carbon emission. To explore the effective way to decrease CO₂ emission and remain high grain yield, in 2012 summer maize growing season from a long term project in North China Plain, soil organic carbon, soil CO₂-C evolution rate, soil temperature, grain yield, and ratio of soil respiration to grain yield in different soil tillage and straw application treatments were invested. The results showed that in 0-20 cm soil layer, the organic carbon in no tillage was significantly higher than that in conventional tillage. Both in no tillage and conventional tillage, straw application could enhance the soil organic carbon concentrations at maturity. The mean soil CO₂-C evolution rate in no tillage was significantly lower than that in conventional tillage; however, straw application could significantly increase soil CO₂-C evolution rate, no matter in no tillage or conventional tillage. This result was mainly due to the changes in soil organic carbon, soil total porosity, and soil temperature. No tillage and straw application result in a significantly increase in grain yield and ratio of soil respiration to grain yield of summer maize. The result obtained in field crop conditions support the idea that both no tillage and straw application affect CO₂ emissions in North China Plain.

Keywords: soil CO₂-C evolution rate, no tillage, summer maize, soil respiration to grain yield ratio, soil organic carbon

Introduction
North China Plain is one of the most important agricultural regions in China; its food production accounts for approximately 1/5 of the total national food production. In this region, summer maize is a most important crop (Shen et al, 2012). As for summer maize planting, conventional tillage, such as furrow plowing and rotary plowing is widely adopted, which aggressively disturbs the topsoil every year. In the short term, these tillage systems create a good soil physical environment for crop growth and development. However, in the long term, the soil structure is degraded and soil organic matter mineralization is increased, which induces soil organic matter content depletion, soil compaction, and soil erosion. All of these processes degrade well-structured soil and is not conductive to the sustainable development of agriculture. Hence, in recent years, with combine harvesters have been widely used, adoption of conservation tillage system, such as no tillage, has been widely accepted in North China Plain.

In recent years, with the rapid expansion of the conservation tillage areas to be adopted, many results indicated that conservation tillage improves economic performance and energy use efficiency. Fabrizzi et al (2005) reported that no tillage showed higher soil water storage during the critical growth stage in maize, and most of the wheat growing season. In the northern region of Northeast China, Chen et al (2011) reported that no tillage decreased surface runoff and increased soil water storage, which boosted soybean grain yield on the sloping farmland. These studies clearly showed that conservation tillage compared to conventional tillage could minimize soil water consumption and soil erosion. Other studies showed that conservation tillage could affect soil temperature and physical properties significantly. In the Lower Gangetic Plain of eastern India, conventional tillage and organic mulches were responsible for higher soil temperature in 0.0-0.2 m depth compared with no tillage and bare soil condition (Sarkar et al, 2007), similar result was tested by Sarkar and Singh (2007). No tillage improved soil water-holding capacity via decreasing soil bulk density, increasing soil porosity, and promoting the formation of soil water-stable aggregates (Yu et al, 2011).

Concerns about rising atmospheric CO₂ levels have prompted much interest in recent years (Ben and Allison, 2010). Indeed, though fossil fuel combustion has been the major cause of increasing CO₂ in the atmosphere, land modifications have been a significant contributor (John et al, 2007). Fluxes of CO₂ from agricultural soils are the result of complex interactions between climatic parameters and soil biological, chemical, and physical properties (David...
Tillage systems could affect soil properties significantly and hence affect CO₂ emissions. Soil respiration is a major component of CO₂-exchange between soil and atmosphere, account for more than 2/3 of the respiration capacity for the global ecological community (Zhang et al., 2012). Farmland ecosystem is a major component of the global ecological community, tillage system, and planting crops have great intervene on carbon cycling. Furthermore, in the global, approximately 10% of the land is used for planting crops. Hence, it is very urgent to conduct studies on soil respiration in farmland ecosystem, these research results may provide important message for evaluating of terrestrial ecosystem carbon balance.

Soil respiration rates are controlled by several factors, including soil organic matter, soil temperature, soil physical parameters, and soil moisture (Jarrecki and Lal, 2006; Raich and Tufekcioglu, 2000). In addition, CO₂ emissions are affected by soil practices such as tillage and residue management (Osozawa and Hasegawa, 1995). However, relatively few studies have been conducted to evaluate the effects of no tillage on CO₂ emissions under no tillage management in North China Plain. Therefore, the objectives of this study were to determine i) soil respiration rate, ii) soil organic matter, and iii) soil physical parameters for no tillage system in North China Plain.

Materials and Methods

Experimental site

The field trial was established in 2003 as the long-term project in North China Plain, which is one of the most important regions of agricultural production in China. The region covers an area of 1.445 million km², amounting to 15% of the national. A major crop in this region is summer maize. In the region, long-term average annual precipitation ranges from 500 to 650 mm. Mean annual temperature is 12.9°C, and mean annual accumulated temperature of greater than 0°C is 4731°C. The total yearly sunshine duration is 2627.1 h, and the non-frost period is 195 d. The experiment was conducted at the Agronomy Station of Shandong Agricultural University (36°10’19"N, 117°9’03"E), which located in North China Plain.

Measurements

After summer maize harvest, soil samples were collected with a soil sampler. Five random locations were chosen in each treatments and samples taken from every 10 cm of the top 40 cm soil depth. Samples were then air-dried in the shed. The collected samples were ground and sieved through a 10 mesh screen. The soil organic carbon concentration was determined by the Graham Colorimetric method (Graham, 1948).

Rate of CO₂-C evolution was measured using a LI-8100 soil CO₂ flux system (LI-COR Inc, Lincoln, NE, USA) with static chambers for gas sampling made of polyvinyl (PVC) pipe at seeding, bell, flowering, filling, and maturity stages of summer maize. The gas chambers bottom base comprised of 15.7 cm high and 25 cm in diameter. The chambers were inserted

<table>
<thead>
<tr>
<th>Treatments</th>
<th>0-10 cm</th>
<th>10-20 cm</th>
<th>20-30 cm</th>
<th>30-40 cm</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>NN</td>
<td>13.06±0.12 b</td>
<td>10.51±0.06 c</td>
<td>8.99±0.06 c</td>
<td>4.54±0.05 d</td>
<td>9.28±0.07 d</td>
</tr>
<tr>
<td>NS</td>
<td>22.03±0.15 a</td>
<td>16.68±0.14 a</td>
<td>12.52±0.09 a</td>
<td>6.56±0.14 c</td>
<td>14.45±0.13 a</td>
</tr>
<tr>
<td>CN</td>
<td>11.79±0.05 b</td>
<td>10.67±0.06 c</td>
<td>10.68±0.04 b</td>
<td>8.45±0.02 b</td>
<td>10.45±0.04 c</td>
</tr>
<tr>
<td>CS</td>
<td>13.31±0.03 b</td>
<td>13.24±0.10 b</td>
<td>12.85±0.09 a</td>
<td>12.97±0.03 a</td>
<td>13.09±0.06 b</td>
</tr>
</tbody>
</table>

Values followed by the same latter in the same column, do not differ significantly (LSD, P < 0.05) standard deviation. NN, NS, CN, and CS represent no tillage with no straw application, no tillage with straw application, conventional tillage with no straw application, and conventional tillage with straw application, respectively.
soil respiration rate in summer maize

... tightly into the ground without any deposit of soil surface when measurement started. CO₂ was sampled and analyzed in sunny day from 9:00 a.m. to 10:00 a.m. for the above growth stages. Each measurement was taken less than 2 min. On Aug 15th, diurnal variation for 6:00 a.m. to 4:00 a.m. in the next day was measured every 2 hours. The soil respiration rate was calculated on the basis of a linear increase in chamber CO₂ concentrations overt time. Simultaneously, soil temperature, soil water content (SWC), and pH in 0-20 cm soil depth were measured by a soil temperature and electric conductivity instrument (WET brand, made in the UK). The soil bulk density was measured by the core method (Ji et al., 2013). Three soil cores were taken each plot to 20 cm depth and cut into 10 cm increments. The soil core samples were oven dried at 105°C for 48 h for the bulk density determinations. Soil total porosity and capillary porosity in 0-20 cm were determined by the Dyck and Kachanoski method (2011).

Grain yield was measured at maturity on an area of 8 m² corresponding to the central rows of each plot. Ratio of soil respiration to grain yield (CO₂-C kg h m⁻²) was obtained with the relationship of grain yield / Cumulative CO₂-C evolution at maturity stage.

Statistical analysis

The data was statistically analyzed using analysis of variance (ANOVA). ANOVA was performed at α = 0.05 level of significance to determine if significant differences existed among different regimes. For determining significant effects, multiple comparisons were made using the least significant difference (LSD) test at α = 0.05.

Results and Discussion

Soil organic carbon

Tillage and straw application during the summer maize growing season could affect the soil organic carbon significantly (Table 1). With straw application, the soil organic carbon in the 40 cm soil profile increased significantly by 5.17% and 2.64%, as compared to NN and CN treatments, respectively. However, the effect of tillage and straw application was different at each soil layer. In 0-10 cm soil layer, the soil organic carbon in CS was significantly higher than those in CN, CS by 8.95%, 10.24%, and 8.72%, respectively; in 10-20 cm soil layer, the highest soil organic carbon was found in NS, followed by CS and CN, and the lowest was found in NN, which was 10.51%; in 20-30 cm soil layer, there was not significant difference was found between NS and CS, but they were all significantly higher than those in NN and CN; in 30-40 cm soil layer, the highest soil organic carbon was found in CS, which was significantly higher than those in CN, CS, and NN. Hence, straw application could increase soil organic carbon both in no tillage and conventional tillage systems; however, in 0-20 cm soil layer, the soil organic carbon in CS was higher than that in NN by 5.88%. The result indicated that the amplification of soil CO₂-C evolution rate in no tillage was significantly higher than that in conventional tillage, but this was reversed below the 20 cm soil layer.

Rate of CO₂-C evolution

Rate of CO₂-C evolution is a critical parameter that describes CO₂ emissions from the farmland. As shown in Figure 1, under different tillage and straw application conditions, the variation trend of rate of CO₂-C evolution in the 4 treatments is consistent, with the developing of growth stages and presenting an odd peak curve. From seeding to flowering stages, the soil CO₂-C evolution rate increased greatly, and at the flowering stage reached the maximum value, then declined rapidly. Compared with conventional tillage, the soil CO₂-C evolution rate in no tillage was significantly decreased; the mean soil CO₂-C evolution rate in NN and NS treatments were significantly lower than those in CN and CS treatments by 5.0% and 4.0% in 2012, respectively. No matter in no tillage or conventional tillage systems, applied straw could significantly increase soil CO₂-C evolution rate, compared with NN and CN treatments, the CO₂-C evolution rate in NS and CS treatments significantly increased by 26.3% and 25.0% in 2012, respectively.

Soil tillage affected soil CO₂-C evolution rate diurnal variation greatly. Figure 2 was based on the data of 15, August, 2012. Under the condition of straw application, the mean soil CO₂-C evolution rate in CS was higher than that in NS by 5.88%. The result showed that from 6:00 a.m. to 20:00 p.m., the mean soil CO₂-C evolution rate in CS and NS were 2.2 and 2.0; however, from 18:00 p.m. to 4:00 a.m., was only 1.1 and 1.0, respectively. Hence, the result indicated that the amplification of soil CO₂-C evolution rate in day time was much better than that in night time.

The result indicated that during the summer maize growing season in North China Plain, no tillage could decrease soil CO₂-C evolution rate significantly, this maybe attributed to increase soil organic carbon. Lal and Kimble (1997) considered that conservation tillage is one of the recommended management prac-
tactics for increasing soil organic carbon pool in agricultural ecosystems. The higher soil organic carbon concentration in 0-40 cm soil layer of no tillage is attributed to soil-straw interaction which caused lower rates of mineralization. These results are according with other results which also reported a higher soil organic carbon concentration under no tillage than under conventional tillage and minimal tillage (Halverson et al, 2002; Sainju et al, 2006; David and Rattan, 2009). Conventional tillage caused progressive homogenization of soil organic carbon concentrations in the plow layers by distributing crops straw mechanically throughout the tillage zone.

Soil temperature

With the increasing in the air temperature, the soil temperature at a depth of 20 cm also increased (Figure 3). Although the soil temperature was considerably higher in CS treatment than that in NS treatment, compared to the effect of air temperature, the increase in soil temperature exhibited a hysteretic effect. The highest value in air temperature was found at 12:00; however, the highest value in NS and CS were obtained at 14:00. The effect of soil tillage on the soil temperature was not consistent: from 8:00 a.m. to 18:00 p.m., the mean soil temperature in CS was higher than that in NS by 0.4°C; however, from 20:00 p.m. to 6:00 a.m. in the next day, the mean soil temperature in CS was higher than that in CS by 0.6°C. Hence, the effect of tillage on the soil temperature was much better at night than in daytime.

No matter under the conditions of conventional tillage or no tillage, straw application could increase soil respiration rate, this result was consistent with Guan et al (2011). However, Sun et al (2009) showed that compared with conventional tillage, conservation tillage decreased soil respiration, with the best effects of no tillage with straw application. This may be caused by the following two reasons. Firstly, many results showed that straw application could decrease soil temperature (Li et al, 2008; Zhang et al, 2008). The more the amount of straw application increased, the more the soil temperature decreased. Under the condition of full of soil moisture, there was positive correlation between soil respiration rate and soil temperature (Tang et al, 2008). Secondly, Straw application could increase soil moisture content. Under the condition of full of soil moisture, both the activities of summer maize root and aerobic microorganisms could be restrained. As a result, the decomposition rate of soil organic matter decreased. Hence, the soil respiration rate declined.

Soil physical parameters at maturity

Straw application under different soil tillage conditions have a significant effect on soil bulk density, soil total porosity, and capillary porosity (Table 2). The soil bulk density was significantly higher in NN and CN, as compared with NS and CS. The highest soil total porosity was observed in CS, followed by NS and NN, and the lowest was found in CN. As for capillary porosity, the highest value was found in NS, followed by NN and CS, and the lowest was found in CN. There were not any significant differences in pH value between any treatments.

Relationship between soil CO₂-C evolution rate and soil physical parameters

In order to explore the relationship between soil CO₂-C evolution rate and soil physical parameters, a multiple regression analysis was performed. The results showed that soil CO₂-C evolution rate was significantly correlated with soil bulk density, soil total porosity, and capillary porosity. The correlation coefficient between soil CO₂-C evolution rate and soil bulk density was 0.85, 0.90, and 0.92 in NN, NS, and CS, respectively. The correlation coefficient between soil CO₂-C evolution rate and soil total porosity was 0.88, 0.91, and 0.93 in NN, NS, and CS, respectively. The correlation coefficient between soil CO₂-C evolution rate and capillary porosity was 0.90, 0.92, and 0.94 in NN, NS, and CS, respectively.

Table 2 - Soil physical parameters at maturity of summer maize in 0-20 cm soil depth.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Soil bulk density (g cm⁻³)</th>
<th>Soil total porosity (%)</th>
<th>Capillary porosity (%)</th>
<th>pH value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NN</td>
<td>1.30 a</td>
<td>46.71d</td>
<td>33.55 b</td>
<td>7.13 a</td>
</tr>
<tr>
<td>NS</td>
<td>1.25 b</td>
<td>57.93 b</td>
<td>37.97 a</td>
<td>7.08 a</td>
</tr>
<tr>
<td>CN</td>
<td>1.27 b</td>
<td>51.45 c</td>
<td>30.21 c</td>
<td>7.19 a</td>
</tr>
<tr>
<td>CS</td>
<td>1.16 c</td>
<td>63.53 a</td>
<td>32.32 bc</td>
<td>7.26 a</td>
</tr>
</tbody>
</table>

Values followed by the same latter in the same column, do not differ significantly (LSD, P < 0.05) standard deviation. NN, NS, CN, and CS represent no tillage with no straw application, no tillage with straw application, conventional tillage with no straw application, and conventional tillage with straw application, respectively.
soil respiration rate in summer maize

<table>
<thead>
<tr>
<th>Table 3 - Correlation analysis of soil CO$_2$-C evolution rate and soil physical parameters.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil physical parameters</td>
</tr>
<tr>
<td>Soil bulk density (g cm$^{-3}$)</td>
</tr>
<tr>
<td>--------------------------------</td>
</tr>
<tr>
<td>Soil bulk density (g cm$^{-3}$)</td>
</tr>
<tr>
<td>Soil total porosity (%)</td>
</tr>
<tr>
<td>Capillary porosity (%)</td>
</tr>
<tr>
<td>pH value</td>
</tr>
<tr>
<td>Organic carbon (%)</td>
</tr>
<tr>
<td>Air temperature (°C)</td>
</tr>
<tr>
<td>Soil temperature (°C)</td>
</tr>
<tr>
<td>SWC (%)</td>
</tr>
<tr>
<td>Soil CO$_2$-C evolution rate (μmol m$^{-2}$ s$^{-1}$)</td>
</tr>
</tbody>
</table>

*, ** significant at the 0.05 and 0.01 probability levels, respectively.

Grain yield and ratio of soil respiration to grain yield

Table 4 shows the grain yield and ratio of soil respiration to summer maize grain yield, which was obtained with the relationship of grain yield / cumulative CO$_2$-C evolution at maturity stage. CS resulted in the highest grain yield (7117.23 kg hm$^{-2}$), but it was not significantly higher than that in NS, followed by CN, and the lowest grain yield was observed in NN. This grain yield value was lower than that in CS, NS, and CN by 71.62, 631.42, and 352.77 kg hm$^{-2}$, respectively; furthermore, the ratio of soil respiration to grain yield in NN was only 0.24 CO$_2$-C kg hm$^{-2}$, which was significantly lower than that in CS and NS by 0.05 and 0.03 CO$_2$-C kg hm$^{-2}$. It was apparent that under the condition of straw application, CS did result in a significant increase in grain yield and ratio of soil respiration to summer maize grain yield.

This study clearly showed that straw application treatments had an overall greater grain yield over no straw application treatments. The difference between mulched soil and bare soil with maize plants is not due to the total water consumption, but due to the alteration of the ratio of transpiration to evapotranspiration (Li et al, 2013). The mechanism of transpiration and evapotranspiration in coordination with carbon utilization acting on grain yield of different mulched and plant density should be studied further. Now and for a fairly long time to come the risks of extreme weather phenomena are increasing along with global climate changes during the summer maize growing seasons in North China, its interaction mechanisms are still not very clear. Hence, understanding these mechanisms is not only essential for understanding the soil respiration rate characteristics with soil tillage and straw application but also provides theoretical and practical crops planting techniques in North China Plain.

Acknowledgements

Supported in part by the National Natural Science Foundation of China (3110127), and by the Project of Shandong Province Higher Educational Science and Technology Program (J13LF06).

References

David ANU, Rattan L, 2009. Long-term tillage effects on soil carbon storage and carbon dioxide emis-

Table 4 - Grain yield and ratio of soil respiration to grain yield of summer maize.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Grain yield (kg ha$^{-1}$)</th>
<th>Ratio of soil respiration to grain yield (CO$_2$-C kg ha$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NN</td>
<td>6,402.61 c</td>
<td>0.24 c</td>
</tr>
<tr>
<td>NS</td>
<td>7,034.03 a</td>
<td>0.27 b</td>
</tr>
<tr>
<td>CN</td>
<td>6,735.38 b</td>
<td>0.24 c</td>
</tr>
<tr>
<td>CS</td>
<td>7,117.23 a</td>
<td>0.29 a</td>
</tr>
</tbody>
</table>

Values followed by the same letter in the same column, each year, do not differ significantly (LSD, P < 0.05) standard deviation. NN, NS, CN, and CS represent no tillage with no straw application, no tillage with straw application, conventional tillage with no straw application, and conventional tillage with straw application, respectively.
sions in continuous corn cropping system from an alfisol in Ohio. Soil Till Res 104: 39-47
Dyck MF, Kachanoski RG, 2011. Scale-dependent covariance of soil physical properties above and below a soil horizon interface: Pedogenic versus anthropogenic influences on total porosity. Can J Soil Sci 91: 149-159