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Abstract

Knowledge of the heterotic responses of elite adapted and exotic maize inbred lines can facilitate their utilization
for population improvement and hybrid development. In the present study, a line x tester mating design was used
to determine the combining ability of 20 elite drought-tolerant maize inbred lines developed at CIMMYT and IITA
and to classify them into heterotic groups under diverse growing conditions. The 20 lines were crossed each with
two inbred line testers representing the tropical and temperate heterotic pattern established in West and Cental
Africa (WCA), to generate 40 testcrosses. A trial comprising the 40 testcrosses along with the cross between the
two testers and three hybrid checks were evaluated at two environments in the dry season and at six environments
in the rainy season. GCA effects were more important than SCA effects in controlling grain yield in both seasons.
Two exotic lines in the dry season and four exotic lines in the rainy season had significantly positive GCA effects.
Only EXL22 was identified as a superior line in the two seasons. Only two adapted lines had significantly positive
GCA effects in either or both seasons while three adapted lines consistently had significantly negative GCA effects
in both seasons. Hybrid between EXL22 and tester 9071 showed broad adaptation to all test environments. The
two testers separated some of the lines into two main heterotic groups. the lines in each heterotic group and the

good combiners will be utilized for developing populations for extracting new improved inbred lines.
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Introduction

Lack of adequate knowledge about the heterotic
responses of elite maize inbred lines may limit their
utilization for population improvement, hybrid devel-
opment and impede progress in generation of new
inbred lines.

Several maize inbred lines that were developed
over time have been used as parents of success-
ful commercial hybrids and synthetic varieties (Kim,
1997; Kim et al, 1999) and as repositories of favor-
able alleles for population improvement (Menkir et
al, 2003). Inbred lines should thus be evaluated in
crosses with known testers to determine the breed-
ing values of the lines in hybrid breeding programs
(Hallauer et al, 2010).

There is widespread concern among maize
breeders that the genetic base of their germplasm
has become too narrow to guarantee progress in the
development of cultivars that can withstand increas-
ing impact of biotic and abiotic stresses (Lu and Ber-
nardo, 2001; Shanbao et al, 2009). This has prompted
the utilization of «exotic x adapted» heterotic patterns
(Li et al, 2004) in hybrid maize development and for

identification of useful introduced lines for population
improvement. Inbred lines of temperate origins have
been utilized in crosses with tropical germplasm and
new inbred lines with better adaptation and good tol-
erance/resistance to biotic and environmental stress-
es have been developed from resulting populations
(Adetimirin et al, 2008). Inbred lines containing exotic
germplasm may serve as sources of favorable char-
acters that are free from deleterious recessive alleles,
which have been eliminated through several genera-
tions of inbreeding and selection (Menkir et al, 2006;
Shanbao et al, 2009).

Clearly defined heterotic groups of maize inbreds
with diverse genetic backgrounds will help maximize
exploitation of heterosis in hybrids and identify new
productive inbred lines (Librando and Magulama,
2008; Kanyamasoro et al, 2012); it will also assist in
identifying lines that possess novel alleles for intro-
gression. When a large number of inbred lines that
cannot be conveniently handled with a factorial mat-
ing scheme to generate hybrids are developed (Men-
kir et al, 2003; Hallauer et al, 2010), the breeding
values and heterotic relationships of the lines can be
determined by their relative performance in crosses
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with known testers (Hallauer et al, 2010). As heterosis
is primarily controlled by epistatic or dominance ge-
netic components, line x tester crosses can be used
to identify new lines with good specific combining
ability in a relatively smaller number of field crosses
(Xia et al, 2005) than using several inbred lines in dial-
lel and factorial crosses (Menkir et al, 2003; Hallauer
et al, 2010). By keeping one half of the genetic com-
ponent of a series of crosses constant, the combining
ability of new lines can be assessed very rapidly and
efficiently to separate the lines into different heterotic
groups. Also, lines that perform well in testcrosses
would nearly always produce excellent single cross
hybrids (Johnson and Hayes, 1936).

Line x tester mating design (Kempthorne, 1957)
has been applied to identify heterotic patterns in trop-
ical and subtropical maize inbred lines (Vasal et al,
1992a, 1992b). This design is efficient for estimating
breeding values of maize inbred lines and for deter-
mining the gene action that controls a quantitatively
inherited trait (Sofi and Rather, 2006) such as drought
tolerance. Several other workers have successfully
used line x tester design to study the combining abil-
ity of their lines, classify them into heterotic groups,
and identify useful heterotic patterns (Menkir et al,
2003; Sofi and Rather, 2006; Librando and Magu-
lana, 2008; Kanyamasoro et al, 2012). This mating
scheme can also be used to determine the heterotic
patterns of introduced and adapted lines to create
complementary source populations for development
of new inbred lines with superior combining abili-
ties for drought tolerance. A set of elite maize inbred
lines developed at CIMMYT and IITA with apprecia-
ble levels of drought tolerance from diverse genetic
backgrounds were assembled for a series of study
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at IITA, Ibadan in Nigeria. Before these lines can be
judiciously used for germplasm improvement and
hybrid breeding, their alignments or otherwise with
one another must first be determined. Twenty of the
lines, 10 each from CIMMYT and IITA, selected for a
line x tester analysis with two inbred line testers were
evaluated under stress managed conditions in the
dry season and across diverse locations in the rainy
season with the objectives to (i) identify those with
good combining ability for grain yield, and (ii) clas-
sify the lines into heterotic groups under well-watered
and drought stress in the dry season, and across the
environments in the rainy season.

Materials and Methods

Germplasm

The twenty tropical lowland late-maturing maize
inbred lines selected for this study (Table 1) comprised
ten lines each from CIMMYT and IITA that were here-
after referred to as «exotic lines» (EXL) and «adapted
lines» (ADL), respectively. These lines were a subset
of an association panel of a diverse collection of 359
advanced drought tolerant maize inbred lines geno-
typed recently using 1,260 single nucleotide poly-
morphism (SNP) markers (Wen et al, 2011). All the
inbred lines included in this association panel were
evaluated for per se performance under controlled
drought stress at Ikenne in Nigeria in 2008. More than
70 promising inbred lines with desirable agronomic
characters and good levels of drought tolerance were
selected for further pre-breeding program. Having
achieved satisfactory level of adaptation to Nige-
rian growing conditions 10 exotic lines along with 10
adapted lines were selected for this study based on
high levels of drought tolerance and other desirable

Table 1 - Line code, abbreviated pedigree, adaptation, and breeding center of 20 lowlands late-maturing exotic and adapted
maize inbred lines along with 2 testers evaluated in testcrosses at diverse test environments in Nigeria.

No Line code Pedigree Adaptation Center

1 EXL09 Cuba/Guad C3 F85-3-3-1-B*6 Exotic CIMMYT
2 EXL11 La Posta Seq C7-F103-2-2-2-1-B*5 Exotic CIMMYT
3 EXL12 La Posta Seq C7-F12-2-3-1-1-B*5 Exotic CIMMYT
4 EXL13 La Posta Seq C7-F152-1-1-2-1-B*3 Exotic CIMMYT
5 EXL18 La Posta Seq C7-F31-2-3-1-1-B*5 Exotic CIMMYT
6 EXL19 La Posta Seq C7-F32-2-1-1-2-B*4 Exotic CIMMYT
7 EXL20 La Posta Seq C7-F64-1-1-1-1-B*5 Exotic CIMMYT
8 EXL21 La Posta Seq C7-F64-2-6-2-2-B-B Exotic CIMMYT
9 EXL22 La Posta Seq C7-F86-3-1-1-1-B*5 Exotic CIMMYT
10 EXL23 La Posta Seq C7-F97-3-1-1-2-B*5 Exotic CIMMYT
11 ADL25 P43SRC9FS100-1-1-8-#1-B1-13-B1-B*7 Adapted IITA

12 ADL30 (TZMI501xKU1414x501)-1-4-3-1-B*7 Adapted IITA

13 ADL32 161-B-B-B-B-B Adapted IITA

14 ADL33 ACR-86-8-1-2-1-1-1-B-1-B*6 Adapted IITA

15 ADL34 TZL-COMP3-C2-S2-34-4-1-2-B*6 Adapted IITA

16 ADL35 DTPL-W-C7-S2-7-1-1-1-1-B-5-B*6 Adapted IITA

17 ADL36 DTPL-W-C7-S2-1-2-1-1-5-B-1-B*6 Adapted IITA

18 ADL38 Babangoyo x MO17LPA x Babangoyo-23-4-3-4-B*8 Adapted IITA

19 ADL42 (GT-MAS:Gk x BABANGOYO x GT-MAS:Gk)-1-1-3-1-B*6 Adapted IITA

20 ADL48 GT-MAS:gk x 9450 x GT-MAS:gk -1-1-2-3- B*9 Adapted IITA

21 1368 Across 7721 x TZSR Tester IITA

22 9071 N28 x TZSR Tester IITA
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Table 2 - Agro-ecological characteristics of the test environments in Nigeria.

Environment Altitude Latitude Longitude Annual Agro-ecology Agronomic
(masl) rainfall (mm) Characteristic
lkenne 60 60°87’'N 30°70’'E 1,421 Rainforest High disease
incidence
during rain
Saminaka 730 100°40'N 80°77E 1,200 Northern Highly
Guinea productive
Savanna
Bagauda 800 120°00'N 80°22’E 1,245 Sudan Random
Savanna drought

agronomic attributes. All lines had white endosperm
except ADL42 that had a yellow endosperm. The
lines were carefully selected to ensure that they do
not have common parentages with the two testers
used. The two inbred testers, 1368 and 9071, which
represent the two major heterotic patterns of tropical
and temperate-derived lines, respectively (Kim, 1990;
Menkir et al, 2003), are the parents of a successful
commercial hybrid marketed by Premier Seed Coy
in Nigeria. The twenty lines were crossed to the two
testers in the growing season of 2010 to generate 40
testcrosses that were evaluated under drought stress
managed conditions in the dry seasons of 2010/11
and 2011/12, and in diverse growing environments
the rainy seasons of 2011 and 2012.

Evaluation under drought stress and well-watered
conditions

The first trial composed of the 40 testcrosses,
a hybrid between the two testers, and three hybrid
checks was planted under managed drought stress
conditions at |kenne (Table 2) on November 24 in
2010 and on November 22 in 2011. Ikenne receives
little rainfall from November to March of every year,
making the location suitable for conducting drought
stress tolerance evaluation during the dry season. The
soil at this site is eutricnitrosol (FAO classification).
The experimental fields are flat and reasonably uni-
form, with high water-holding capacity (Menkir et al,
2009). The three hybrid checks include Oba Super 1
and two synthetic drought tolerant hybrids — M1026-
7 and M1026-8 — developed at IITA. Experiments
were planted in two adjacent blocks that received
different irrigation treatments. The first block (Block
1) received irrigation until the crop had attained phys-
iological maturity, whereas the second block (Bock
2) received irrigation only for 28 days which was ap-
proximately three to four weeks before anthesis. The
blocks were separated by four ranges, each 4.25 m
wide, to restrict lateral movement of water from the
fully irrigated block to the drought stress block. Irri-
gation water was supplied with an overhead sprinkler
irrigation system that dispenses 12 mm of water per
week. All field management practices were uniform
for both the well-watered and water-stressed experi-
ments. The hybrids were arranged in a 4 x 11 lattice
design with three replications in each block in single 4

m rows, with 0.75 m spacing between rows and 0.50
m spacing between plants within a row. Three seeds
were sown per hill and later thinned to two plants per
hill after emergence to attain a population density of
53,333 plants ha'. A compound fertilizer was applied
at the rates of 60 kg N, 60 kg P, and 60 kg K ha™ at
the time of sowing. An additional 60 kg ha' N was
applied in the form of urea as top dressing four weeks
later. Gramoxone and primextra were applied as pre-
emergence herbicides at 5.0 | ha™ each of paraquat
(N,N’-dimethyl-4,4’-bipyridinuim dichloride) and atra-
zine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-
triazine) to control weeds. Subsequently, manual
weeding was done to keep the trial weed-free.

PVC access tubes were installed in December
2010 and 2011 in both well-watered and drought
stress blocks to monitor soil moisture content during
the growing cycle of the crop. Soil profiles were dug
in each block by inserting a 2-m long PVC access
tube into each soil profile using specialized installa-
tion kits and procedures contained in access tube
installation guide version 1.0 (Sentek Sensor Tech-
nologies, 2003).

Soil moisture content measurements commenced
at Ikenne 35 days after planting (DAP) in each year
using a portable soil moisture monitoring system
known as Diviner 2000 which had a display unit and a
portable 1.6 m long probe with a Diviner Cable. With
the 1.6 m probe soil moisture readings were taken at
regular intervals of 10 cm down through the soil pro-
file. Soil moisture content scores were taken through
the wall of a PVC access tube by remote sensing fol-
lowing the procedures described in Diviner 2000 Por-
table Soil Moisture Monitoring Solution User Guide
Version 1.5 (Sentek Pty Ltd). Data were recorded first
on weekly basis and later on daily basis when the im-
pact of water stress became very critical in each year.
Data were downloaded from the Diviner 2000 display
unit on a desktop computer

In each plot under drought stress and full irriga-
tion days to 50% anthesis (DTA) and days to 50%
silking (DTS) were recorded as the number of days
from planting to when 50% of plants in a plot had
shed pollen, and had emerged silks, respectively. An-
thesis-silking interval (ASl) was computed as the dif-
ference between days to 50% silking and 50% anthe-
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sis. Leaf death (LFDTH) score which is an indication
of leaf senescence was rated in drought stress block
at 10 weeks after planting (WAP) on a scale of 1 to 9,
where 1 = almost all leaves are green and 9 = virtually
all leaves are dead. At the time of harvest, ear aspect
(EASP) was visually rated on a scale of 1 to 5, where
1 = clean, uniform, large, and well-filled ears and 5 =
rotten, variable, small, and partially filled ears. The to-
tal number of plants and ears were counted in each. A
cob was counted if it had at least one kernel set. The
number of ears per plant (EPP) was then computed
as the proportion of the total number of ears at har-
vest divided by the total number of plants harvested.
All ears harvested from each plot were weighed and
shelled to determine grain weight and a representa-
tive sample was taken to determine percent moisture.
Grain yield (GY), measured in kg ha™ adjusted to 15%
moisture content was calculated from grain weight
and percent moisture.

Evaluation during rainy seasons

A second trial composed of the 41 hybrids and
the hybrid checks used during the dry seasons were
evaluated at Saminaka, lkenne, and Bagauda (Table
2) during the rainy seasons of 2011 and 2012. The
hybrids were arranged in 4 x 11 alpha lattice design
and were planted in single row plots, 5 m long with
spacing of 0.75 m between rows and 0.50 m between
plants in a row. At each test environment, 60 kg ha'
N, 60 kg ha' P, and 60 kg ha' K were applied at
planting, and another 60 kg ha' N was applied four
weeks after as top dressing. Standard cultural prac-
tices were applied to keep the trial weed-free.

At each test environment, DTS, DTA, ASI, PLHT,
EASP, and EPP were recorded in each plot as ear-
lier described. All ears harvested from each plot were
shelled to determine percent moisture. GY adjusted
to 15% was then computed using grain weight and
percent moisture.

Statistical Analyses

Each location-year under drought stress and
well-watered conditions as well as in the rainy sea-
son was considered a test environment. Analyses
of variance (ANOVA) were computed for each loca-
tion-year combination within each growing condition
(drought stress, well-watered, rainy season) to entry
means adjusted for block effects according the lat-
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tice design (Cochran and Cox, 1960; Menkir et al,
2003). The pooled error mean square was calculated
by dividing the sum of the error sums of square by
the corresponding sum of the error degrees of free-
dom for each test environment. Combined analysis of
variance was then computed across years using the
adjusted means. In the combined analysis, location-
year combinations were treated as random effects
while testcrosses were considered as fixed effects.
All analyses were carried out with PROC GLM in SAS
(SAS Institute, 2009) using a RANDOM statement
with TEST option. Line x tester analysis was done
to partition the genotype source of variation into
that due to parental line and tester general combin-
ing ability (GCA) effects as well as that due to spe-
cific combining ability (SCA) effects from the adjusted
means using the method described by Kempthorne
(1957). The mean squares for GCA and SCA effects
were tested for significance using their interactions
with environment as error terms. The mean squares
due to GCA x environment and SCA x environment
effects were tested using the line x tester x envi-
ronment mean square as error term while the mean
square due to environment x line x tester was tested
using the pooled error mean square. The estimates
of GCA and SCA effects for grain yield which is main
trait of interest were computed using a line x tester
model. SPEARMAN’S correlation coefficient was cal-
culated between pairs of combining ability effects for
grain yield estimated in different growing conditions.

Results

Results of the soil moisture content monitored
with Diviner 2000 during the flowering periods of the
maize crop under both well-watered and drought
stress conditions in 2010/11 and 2011/12 dry sea-
sons at lkenne were reported in Adebayo et al (2013).
As expected, the soil moisture content at every 10
cm depth down the soil profile in fully irrigated block
was always higher than that of drought stress blocks.
The volumetric water content assumes downward
trend at every data point in the drought stress block
while it fluctuates in the well-watered block because
of weekly irrigation.

Trait means of testcrosses of exotic and adapted
drought tolerant inbred lines and two testers evaluat-
ed under well-watered and drought stress conditions

Table 3 - Means (=SE) of grain yield and other traits averaged over two years for 40 testcrosses of adapted and exotic maize
inbred lines crossed to two testers and evaluated under well-watered and drought stress environments at Ikenne, Nigeria.

Traits Well-watered environment Drought stress environment
1368 1368 9071
adapted exotic adapted exotic adapted exotic adapted exotic

Grain yield (kg ha') AT77+482 5807+179 5542+382 6829+260 1201148 1784114 1441138 2188+153
Days to anthesis 57+0.6 56+0.5 58+0.4 57+0.5 61+0.7 60+0.5 60+0.5 60+0.5
Days to silking 59+0.6 57+0.3 59+0.3 58+0.4 65+0.8 62+0.6 65+0.5 63=0.6
Anthesis-silking-interval (days) 1.4+01 0.8+0.2 1.7+0.2 1.1+0.3 4.3+0.3 2.8+0.2 48+0.4 3.5+0.3
Plant height (cm) 197+4.1 202+3.0 209+3.2 212+34 128+5.1 135+3.2 138+2.9 145+3.1
Ear aspect (1-5) 3.1+0.2 2.8+0.1 3101 2.9+0.1 3.4%0.2 3.0+0.1 3.2+0.1 2.9+0.1
Ear per plant number 0.9+0.02 1.0+0.02 0.9+0.02 1.0+0.02 0.6+0.03 0.7+0.02 0.7+0.02 0.7+0.02
Leaf death score(1-9) - - - - 7.3+0.2 6.9+0.2 6.7+0.1 6.7+0.2
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Table 4 - Means (+SE) of grain yield and other traits averaged over two years for 40 testcrosses of adapted and exotic maize
inbred lines crossed to two testers and evaluated in 3 test environments in Nigeria.

Traits Rainy season
1368 9071
adapted exotic adapted exotic

Grain yield (kg ha™) 3409 = 147 4196 =+ 146 4146 = 173 4712 =192
Days to anthesis 61 £0.3 60 = 0.3 61 =04 60 = 0.3
Days to silking 62 + 0.4 60 + 0.4 62 + 0.4 610 = 0.4
Anthesis-silking-interval (days) 1.5+05 1.2 =01 22 =01 1.7 =01
Plant height (cm) 178 = 2.1 1845 +2.2 188 + 2.3 189 +22
Ear aspect (1-5) 3.3 £0.1 28 = 0.1 3.1 =0.1 3.0 =0.1
Ear per plant number 0.9 = 0.01 1.0 = 0.01 0.9 = 0.01 0.9 +*0.01

and in three diverse growing conditions are presented
in Tables 3 and 4. Testcrosses of exotic lines involv-
ing 9071 as a tester produced the highest mean grain
yield under well-watered conditions and testcrosses
of adapted lines involving 1368 as a tester produced
the lowest grain yield under drought stress conditions
(Table 3). Testcrosses involving exotic lines had bet-
ter scores for ear aspect, number of ears per plant,
antheisi-silking-interval, days to anthesis and silking
than those involving adapted lines under both irriga-
tion treatments, and also for leaf death score under
drought stress in dry season (Table 3).

Dry season

In the analysis of variance combined across years
and irrigation treatments, environment (E) and geno-
type (G) effects significantly affected all the measured
traits (Table 5). Significant differences were also de-
tected among the two water regimes (Wat_Reg) and
G x Wat_Reg for almost all the traits. Testcross trait
means averaged over two years under well-watered
and drought stress conditions showed that drought
stress reduced grain yield by 71%, plant height by
33%, and number of ears per plant by 30% but in-
creased days to anthesis by 5%, days to silk by
10%, and anthesis-silking-interval by 200% (data
not shown). G x E interaction was significant for grain

yield and plant height only. The variation among lines
(GCA) was highly significant for all measured traits
while significant differences were observed between
the testers for plant height only. Line x tester interac-
tion (SCA) was highly significant for days to anthe-
sis, days to silking, and ear aspect. Mean squares for
GCA, . xE, GCA_,., X E, and SCA x E were all signifi-
cant for grain yield and few other traits (Table 5).
Testcross means, estimates of GCA and SCA ef-
fects of the 20 DT lines for grain yield, and the het-
erotic classes under each irrigation regime are pre-
sented in Table 6. Under full irrigation, the GCA effect
of 447 kg ha' and 161 kg ha for tester 9071 under
well-watered and drought stress, respectively, were
significantly different from zero (Table 6). On the aver-
age, testcrosses involving 9071 as a tester out-yield-
ed those involving 1368 as a tester by 17% under
well-watered conditions and by 20% under drought
stress. The number of testcrosses involving 1368
and 9071 having mean grain yields that exceeded
the mean yield of the hybrid involving the two testers
(1368 x9071) by at least 10% are five and ten, respec-
tively, under well-watered condition. Under drought,
11 testcrosses of 1368 and 15 of 9071 produced
mean yields that are 10% higher than the mean yield
of 1368 x 9071 (Table 6). Among the 12 lines that had
positive GCA effects under well-watered condition,

Table 5 - Mean squares of traits from the combined analysis of variance for 10 adapted and 10 exotic maize inbred lines evalu-
ated in testcrosses with 2 testers across well-watered and drought stress conditions in the dry seasons of 2010 and 2011 at

Ikenne in Nigeria.

Source of variation Df §GY DTA DTS ASI PLHT EASP EPP tLFDTH
(kg ha") (days) (days) (days) (cm) (1-5) (no) (1-9)
Environment (E) 3 745878304*** 35.5%** 1506.5*** 318.9%** 224649*** 4.8** 3.xx 239.1*
$Water_Reg 1 2212391584*** 1301.6%* 4421.9%** 925.4*** 611593*** 1.4 9.4xx* -
Genotype (G) 43 8452641 *** 30.9%** 38.9%** 8.7+ 767.0%** L Rl 0.1** 2.0%**
GxE 129 1671477*** 27 47 23 272.7* 23 0.02 0.9
G x Wat_Reg 43 2534127*** 28 8.3%* 3.8%* 355.4 0.4** 0.03* -
GCA,, 19 14577067*** 58.9%** 71.0%** 14.5%** 1850.8*** 1.9%** 105** 3%
\estr 1 38477215 0.5 21.8 15.7 10585* 0.3 0.02 5.7
19 1869629 5.4** 8.6%* 2.3 300.3 0.4** 0.04 0.6
GCA,, xE 19 2070279** 23 5.7* 3.3** 317.6 0.3* 0.03 0.9
GCA, 4, XE 1 3937657 6.6* 4.3 1.6 380.9 0.8* 0.1* 19
SCAXE 19 1072819** 24 3.3 1.5 206.9 0.2 0.02 0.6

* x* x*x* Data significant at p < 0.0001, 0.01, and 0.05, respectively. $\GY= Grain yield, DTA = Days to 50% anthesis, DTS =
Days to 50% silking, ASI = Anthesis-silking interval, PLHT = Plant height, EASP = Ear aspect where 1=clean, uniform, large,
and well-filled ears and 5 = rotten, variable, small and partially filled ears, EPP = Number of ears per plant calculated as ratio
of plants harvested to ears harvested, lLFDTH = Leaf death score measured in drought stress blocks in the two seasons only,
where 1 = almost all leaves are green and 9 = virtually all leaves are dead, *Wat_Reg = Water or irrigation regimes which are

well-watered environment and drought stress environment.
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Table 6 - Mean grain yield, general combining ability (GCA) and specific combining ability (SCA) effects, and heterotic group
of 10 adapted and 10 exotic DT lines evaluated in testcrosses with two testers under well-watered (WW) and drought stress
(DS) conditions in dry seasons of 2010 and 2011 at Ikenne in Nigeria.

Inbred Grain yield (kg ha) under GCA effects (kg ha) SCA effects (kg ha') under Heterotic Group

Full irrigation (WW) Drought stress (DS) Full irrigation (WW) Drought stress (DS)

1368 9071 1368 9071 Ww DS 1368 9071 1368 9071 WwW DS
ADL25 6725 7439 1732 1930 1343* 177 90 -90 62 -62 1 1
ADL30 6176 7441 1648 1592 1070* -34 -185 185 189 -189 2 1
ADL32 5738 5006 1591 958 -367 -379 813 -813 478 -478 1 1
ADL33 4345 5679 702 1763 -727* -421 -220 220 -370 370 2 2
ADL34 2462 4738 633 1002 -2139* -836* -691 691 -23 23 0 2
ADL35 2818 3862 801 1135 -2398* -686* -75 75 -6 6 0 2
ADL36 3061 5113 679 915 -1652* -857* -579 579 43 -43 0 1
ADL38 5744 4264 1761 2164 -735* 309 1187 -1187 -4 4 1 2
ADL42 5754 6017 1348 1355 147 -303 316 -316 157 -157 1 1
ADL48 4948 5859 117 1595 -335 -298 -9 9 -78 78 2 2
EXLO9 4865 5574 1993 2247 -519 466* 92 -92 34 -34 1 1
EXL11 6161 6638 1903 2634 661 615% 208 -208 -205 205 1 2
EXL12 5856 7173 1426 1465 776* -208 212 212 142 -142 2 1
EXL13 5840 6846 2098 2582 604 687* -56 56 -81 81 2 2
EXL18 5730 7579 1878 2365 916* 468* -478 478 -83 83 2 2
EXL19 5838 7056 1352 1654 708* -151 -162 162 10 -10 2 1
EXL20 5337 6198 1758 1826 29 138 16 -16 127 -127 1 1
EXL21 5230 7152 1360 2118 453 86 514 514 -218 218 2 2
EXL22 6744 8292 2476 3040 1780* 1104* -327 327 -121 121 2 2
EXL23 6465 5784 1600 1953 385 123 787 -787 -16 16 1 2
1368 0 5556 0 1307 -447 -161
9071 5556 0 1307 0 447 161
Mean 5292 6186 1493 1790 0 0 0 0 0 0
SE 96 96 59 59 351 216 269 269 187 187

*GCA effects significantly different from zero, standard error (SE) for tester GCA under WW and DS are 0.81 and 0.50 kg ha™,

respectively; LSD(0.05) estimated in kg ha'

only two adapted (ADL25 and ADL30) and four exotic
(EXL12, EXL18, EXL19, and EXL22) lines had positive
and significant GCA effects. Under drought stress,
out of 10 lines with positive GCA effects, five exotic
lines (EXL0O9, EXL11, EXL13, EXL18, and EXL22) had
significantly positive GCA effects. Three adapted
lines (ADL34, ADL35, and ADL36) under both irriga-
tion treatments, and one other adapted line (ADL38)
under well-watered condition, had significantly nega-
tive GCA effects (Table 6). Although the SCA effect
was not significant for grain yield (Table 5), five test-
crosses (ADI32 x 1368, ADL38 x 1368, EXL23 x 1368,
ADL34 X 9071, and ADL36 x 9071) had significantly
positive SCA effects under well-watered (Table 6).
The procedures described earlier (Menkir et al,
2003; Menkir et al, 2004; Librando and Magulama,
2008) with some modifications were used to classify
the adapted and exotic lines into groups. Inbred lines
whose testcross mean grain yields were significantly
lower than the mean grain yield of the hybrid between
the two testers under an irrigation treatment were
placed in Group 0 (Table 6). Inbred lines showing
positive SCA effects with tester 1368 but having neg-
ative SCA effects with 9071 and with similar or sig-
nificantly higher testcross mean yields in comparison
to the mean grain yield of the hybrid between the two
testers were included in heterotic Group 1 under each
irrigation treatment (Table 6). Also, the inbred lines
showing negative SCA effects with 1368 but having
positive SCA effects with 9071 and with similar or
significantly higher mean grain yields in comparison
to the mean grain yield of the cross between the two
testers were placed in heterotic Group 2 under each

irrigation treatment (Table 6). Using this scheme,
three adapted lines were included in Group O under
full irrigation. Four each of adapted and exotic lines
were included in Group 1 whereas three adapted and
six exotic lines were included in Group 2 under full
irrigation. Five adapted lines were not grouped under
full irrigation. Under drought stress conditions, five
adapted and four exotic lines were included in Group
1 whereas five adapted and six exotic lines were
included in Group 2. Five adapted (ADL25, ADL32,
ADL33, ADL42, and ADL48) and six exotic (EXLOQ9,
EXL13, EXL18, EXL20, EXL21, and EXL22) lines were
classified in the same group under the two irrigation
treatments.

Rainy season

In the combined analysis of variance, environ-
ment, genotype, and G x E interaction were signifi-
cant sources of variation for all measured traits (Table
7). The variation among the DT lines in testcrosses
(GCA) was also highly significant for all traits whereas
the two testers (GCA) in crosses with the DT lines dif-
fered significantly only for antheis-silking-interval and
plant height. The line x tester interaction (SCA) was
highly significant for all traits except anthesis-silk-
ing-interval and number of ears per plant. The mean
squares for line x environment and tester x environ-
ment interactions were significant for grain yield and
most other traits whereas the mean squares for line x
tester x environment interaction was significant only
for anthesis-silking-interval (Table 7).

Testcross means, estimates of GCA and SCA ef-
fects for grain yield, and the heterotic classes across
the three environments are presented in Table 8.
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Table 7 - Mean squares of traits from the combined analysis of variance for 10 adapted and 10 exotic DT inbred lines evaluated
in testcrosses with 2 testers across 3 test environments in the growing seasons of 2011 and 2012 in Nigeria.

Source of variation Df §GY DTA DTS ASI PLHT EASP EPP
(kg ha”) (days) (days) (days) (cm) (1-5) (no)
Environment (E) 5 477541587 ** 2003.2*** 2565.6%** 60.7%* 72952%** 11.4%* 0.7**
Genotype (G) 43 8967563*** 42.1%x* 41.5%** 5.0%** 1524.0%** 1.2%%* 0.04***
GxE 215 1616245*** 3.3%* 4.0%** 1.2%%* 225.6%* 0.3%** 0.02*
GCAline 19 12626845 ** 75.3%** 74.2%%* [ e 1944.3%** 1.1%* 0.1%**
GCAtester 1 59845544 12.3 35.1 61.9* 7494.5%* 0.001 0.01
SCA 19 2930498*** 13.7%%* 12.0%** 0.8 448.6%* 1.4%** 0.03
GCAline x E 95 1976782*** 33 4.4* 1.3%* 284.6%* 0.4** 0.02
GCAtester x E 5 10365399*** 9.4 9.4** 5.7*** 137.3 0.9** 0.02
SCAXE 95 831430 29 2.8 0.7* 167.1 0.2 0.02

* x* x*x* Data significant at p < 0.0001, 0.01, and 0.05, respectively. $<GY= Grain yield, DTA = Days to 50% anthesis, DTS =
Days to 50% silking, ASI = Anthesis-silking interval, PLHT = Plant height, EASP = Ear aspect where 1=clean, uniform, large,
and well-filled ears and 5 = rotten, variable, small and partially filled ears, EPP = Number of ears per plant calculated as ratio

of plants harvested to ears harvested.

Mean grain yields of testcrosses in this trial ranged
between 1,963 and 5,323 kg ha'. The severe droughts
at Bagauda during the two rainy seasons under con-
sideration and the excessive rainfall at Saminaka in
2012 were suspected to be responsible for the rela-
tively low mean grain yields for testcrosses recorded
in the rainy season. Mean grain yield of testcrosses
and checks at Saminaka in 2012 (2,854 kg ha) was
just 36% of the mean yield in 2011 (7,911 kg ha™).
Mean yields of 10 hybrids of 1368 and 13 of 9071 ex-
ceeded the mean yield of the hybrid between the two
testers (1368 x 9071) by at least 10%. Among the 12
lines that had positive GCA estimates for grain yield,
only one adapted (ADL30) and four exotic (EXL11,
EXL19, EXL22, EXL23) lines had significant GCA ef-
fects (Table 8). Three adapted (ADL34, ADL35, and
EDL36) and one exotic (EXL09) lines had significantly
negative GCA effects for grain yield. Although the
mean squares for SCA was significant for grain yield,
only three testcrosses (ADL32 x 1368, ADL33 x 9071,
and ADL35 x 9071) showed significantly positive SCA
estimates (Table 8).

In classifying the 20 lines into heterotic groups,
the estimates of the combining ability effects and the
mean grain yields of the lines in testcrosses with the
two testers were considered. 11 lines showing posi-
tive SCA effects with 1368 and negative SCA effect
with 9071 and whose mean grain yields were similar
to or significantly higher than the mean yield of 1368
x 9071 were placed in group 1. Six lines having posi-
tive GCA effect with 9071 and negative GCA effect
with 1368 and whose mean grain yields were similar
to or significantly higher than the mean yield of 1368
X 9071 were placed in group 2. Three lines that had
mean grain yield that was lower than the mean yield
of 1368 x 9071 were not grouped.

Performance of DT lines across diverse growing
environments

Although the line x environment, tester x environ-
ment, and line x tester x environment interactions
were mostly significant for grain yield in the trials
(Tables 5 and 7), some lines still showed consistency
in their heterotic groups. In the trials for dry and rainy
seasons, four adapted (ADL25, ADL32, ADL42, and

ADL48) and one exotic (EXL11) lines were in group
1 whereas two adapted (ADL30 and ADL33) and
one exotic (EXL22) were in group 2. In both trials,
three lines (ADL34, ADL35, and EXLQ9) could not be
grouped (Tables 6 and 8).

Discussion

Maize breeders classify inbred lines into heterotic
groups based on testcross performance with testers
of known genetic backgrounds and heterotic relation-
ships (Vasal et al, 1992a, 1992b; Menkir et al, 2004;
Librando and Magulama, 2008). The drought tolerant
maize inbred lines developed at CIMMYT and IITA
were classified into heterotic groups using the two in-
bred testers, 1368 and 9071. Menkir et al (2003) had
earlier used the same inbred testers to classify 34
lowland white inbred lines, and reported satisfactory
results. These testers represent the heterotic patterns
of tropical and temperate-bred inbred lines mostly
used in West and Central Africa (WCA) for determin-
ing the heterotic response of new inbred lines so that
those with good combining ability can be identified
(Menkir et al, 2003). Although the two testers were
not specifically bred for drought tolerance, most of
the hybrids involving the two testers expressed sig-
nificant differences in grain yield and other agronomic
traits. Most of the hybrids that out-yielded the cross
between the two testers were those involving 9071 as
a tester, indicating that 9071 possess more comple-
mentary alleles to the lines used in this study than
1368. This finding was contrary to that reported by
Menkir et al (2003) for a different set of lowland white
inbred lines.

The consistently lower volumetric soil moisture
content in the drought stress block compared to
the well-watered block in each year’s dry season
experiment, the significant differences detected be-
tween the two irrigation (or water) regimes over the
two years, the trial mean grain yield reduction of over
70% revealed that severe drought stress which elic-
ited differential reactions from the tested drought tol-
erant maize inbred lines was simulated in the dry sea-
son. Testcrosses of exotic lines with each tester were
more productive than those of adapted lines in trials

59 ~ 115-1283

Maydica electronic publication - 2014



Adebayo et al

122

Table 3 - Mean grain yield, general combining ability (GCA) and specific combining ability (SCA) effects, and heterotic group
of 10 adapted and 10 exotic DT lines evaluated in testcrosses with two inbred testers at three locations in rainy seasons of

2011 and 2012 in Nigeria.

Inbred Mean grain yield GCA effects SCA effects Heterotic
(kg ha) with (kg ha) (kg ha) Group
1368 9071 1368 9071
ADL25 3867 4375 -68 49 -49 1
ADL30 4382 5323 730* -55 55 2
ADL32 4300 3871 93 499 -499 1
ADL33 3118 5075 -5 -719 719 2
ADL34 1963 3378 -1435* -333 333 0
ADL35 2042 3610 -1167* -459 459 0
ADL36 2575 4017 -936* -418 418 2
ADL38 3853 3494 -490 446 -446 1
ADL42 3904 3843 -240 333 -333 1
ADL48 4082 4474 255 57 -57 1
EXL09 3374 3944 -568* 24 -24 0
EXL11 4367 4700 532* 83 -83 1
EXL12 4179 4334 94 161 -161 1
EXL13 4149 4690 370 7 -7 1
EXL18 4562 4624 434 250 -250 1
EXL19 4282 5124 552* -80 80 2
EXL20 4038 4978 278 -23 23 2
EXL21 3877 4376 166 56 -56 1
EXL22 4366 5132 576* -32 32 2
EXL23 4764 5220 830* 154 -154 1
1368 3710 -312
9071 3710 312
Mean 4115 4115 0 0 0
SE 80 80 257 229 229

*GCA effects significantly different from zero, standard error (SE) for tester GCA is 58 kg ha™, respectively.

under the two irrigation treatments suggesting that
the exotic lines possess favorable and unique alleles
that can be used to improve the adapted germplasm
for grain yield and drought tolerance. Other authors
have earlier reported the benefits of using CIMMYT-
bred germplasm for population improvement at IITA,
and vice versa (Dhiliwayo et al 2009; Adebayo et al,
2013). The adapted and exotic lines having significant
additive genetic effects for grain yield under each ir-
rigation treatment would be exploited for population
improvement in order to develop new inbred lines
with higher levels of drought tolerance and productiv-
ity. The two exotic lines, namely EXL18 and EXL22
possessing superior general combining ability effects
under both irrigation regimes were originated from
the La Posta Sequia population that has undergone
several cycles of recurrent selection for drought toler-
ance improvement (Guei and Wassom, 1996).

The different agro-ecological conditions that are
peculiar to test environments that were used for the
rainy season trials coupled with the excessive rainfall
at Saminaka in 2012 that introduced more heteroge-
neity among the three environments accounted for
the significant genotype x environment, line x envi-
ronment, and tester x environment interactions which
suggest that the testcrosses, lines, and testers are
inconsistent in their performance across the environ-
ments. Less than 50% of lines tested had good or
poor general combining ability under drought stress

condition in the dry season and in the rainy season.
Only inbred line EXL22 had good general combining
ability in the rainy season as well as under well-wa-
tered and drought stress conditions. Across all en-
vironments (well-watered, drought stress, and rainy
season), the cross between EXL22 and 9071 con-
sistently produced the highest mean grain yield and
had positive though non-significant SCA estimates.
Hence, testcross hybrid EXL22 x 9071 most probably
possesses broad adaptation to the diverse growing
conditions used in this study. Testcross mean yields
of ADL34, ADL35, and ADL36, particularly with tester
1368, were consistently the poorest in all the environ-
ments and therefore, the lines could not be grouped
by the two testers. These three lines that were devel-
oped from some tropical populations most probably
shared the same genetic backgrounds with one an-
other and also with 1368.

Our results show that the two inbred testers fairly
classified the set of adapted and exotic lines evalu-
ated in this study into two main heterotic groups that
can be exploited further for the creation of comple-
mentary reciprocal populations for developing more
productive drought tolerant inbred lines.
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