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To study the effects of zinc foliar application and water stress on quantitative and qualitative characteristics of 
corn, an experiment was conducted in Varamin, Iran during the growing season of 2011. The experimental design 
was randomized complete blocks in factorial arrangement with four replications. Factors included water stress 
(complete irrigation, irrigation after 90 mm of water evaporation and irrigation after 130 mm of water evaporation 
from class A pan) and the zinc foliar applications were as follows: 0, zinc sulfate and zinc chelate. Result showed 
that severe water stress decreased seed yield, oil percentage, chlorophyll content, relative water content, zinc 
grain content, auxin and gibberellin, and it caused an increase in antioxidant enzyme activity. Zinc foliar application 
increased all tested attributes under severe water stress. The results of these tests showed that zinc foliar applica-
tion was effective against the detrimental effects of water stress.

Abstract

Introduction
Water is a scarce resource in Iran because of 

highly variable amounts of rainfall. The intensity of the 
effects of water stress on plants is variable according 
to the timing, duration and magnitude of the deficit 
(Pandey et al, 2001). In many regions of the world, in-
cluding Iran, water stress is one of the most important 
factors responsible for decreasing agricultural crop 
yields. Effective irrigation relies on identification of 
critical times for irrigation for application in an accu-
rate and well organized irrigation schedule to make ir-
rigation practices more effective and to conserve wa-
ter resources thus facilitating sustainable agricultural 
practice (Ngouajio et al, 2007). Water stress induces 
oxidative stress in plants (Hajiboland and Joudmand, 
2009). However, one of the most important effects of 
moisture shortage is that mobility of some elements 
such as zinc will be reduced in the soil solution caus-
ing plants to encounter deficiency of the element 
because of restricted root growth (Kafi and Rostami, 
2007). The efficacy of fertilizers is reduced under con-
ditions of water stress, especially if the use of these 
fertilizers is not consistent with the plants’ vegeta-
tive growth. Zinc sulfate plays a more important role 
than other fertilizers in regulating stomata and main-
taining the ions balance in plant systems to reduce 
draught stress. Thus, fertilizer consumption should 
be balanced and efficient during times of water short-

age and this especially applies to that of zinc sulfate 
(Baybordi, 2006; Babaeian et al, 2010). In this regard, 
Krishna (1995) reported a significant positive effect 
of zinc treatment on dry matter, seed and straw yield 
of mungbean as well as crude protein percentage in 
seeds. Kassab (2005) indicated that foliar application 
of Zn, Mg, Mn and Fe significantly increased growth 
parameters, yield and its components in mungbean 
plants.

Given the above mentioned points, it seems that 
zinc foliar application can reduce the effects of water 
stress and supply essential plant needs because re-
search has shown that zinc increases crop yield, pro-
motes the quality of produce and consequently pro-
motes the enrichment and improvement in the health 
of a plant community (Borrell et al, 2008).

Abbrevitations: ROS - reactive oxygen species, RWC - relative water content, CAT - catalase, SOD - Superoxide 
dismutase, GPX - Glutathione peroxidase, Chl - Chlorophyll, H2O2 - hydrogen peroxide, GA3 - Gibberellin, IA - Auxin

Materials and Methods
The experiment was conducted in research field 

of Azad University, Varamin Branch in Iran during the 
growing season of 2011.The site of the study was 
situated at 31°51’E and 20°35’N and 1,050 masl. 
Site of study was located 900 m above sea level. 
Soil samples were taken prior to the tests in order 
to determine its physical and chemical properties. A 
composite soil sample was collected at a depth of 
0 - 30 cm. It was air dried, crushed and then test-
ed to determine its physical and chemical proper-
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ties. The soil in the research field was determined as 
clay/loam. Properties of the soil sample are shown 
in Table 1. Soil preparation was done with plow and 
disk, prior to setting out the plots. The experimental 
design was randomized complete blocks in factorial 
arrangement with four replications. The factors tested 
in the experiment were water stress: complete irriga-
tion, irrigation after 90 mm of water evaporation (mild 
water stress) and irrigation after 130 mm of water 
evaporation from class A pan (severe water stress); 
and zinc foliar applications (untreated, zinc sulfate 
and zinc chelate). Treflan and gallant super were ap-
plied to control weed growth. According to soil analy-
sis, phosphorus (150 kg ha-1 P) and potassium (200 
kg ha-1 K) fertilizers were applied to the soil. Nitrogen 
was supplied from ammonium nitrate source (300kg 
ha-1) at three stages: seed sowing, end of the rosette 
stage, and before the flowering stage. The plots were 
sown with corn seed (S.C 704) in rows of 75 cm with 
plant spacing of 20 cm. Corn was planted manually in 
May 2011. Seeds were sown 6 cm deep. Two seeds 
were sown in each position and thinning was done 
in the plots to achieve the desired plant population 
(67,000 plant ha-1). After sowing, irrigation was ap-
plied as required during the growing season. The 
plots were 7 m long and consisted of five rows, 0.5 m 
apart, 2 m alley was maintained between plots to pre-
vent lateral water movement. Zinc foliar application 
was done at the stage of stem elongation. Foliar ap-
plications were applied with a pressurized backpack 
sprayer (12 l capacity) calibrated to deliver 1,000 l ha-1 
of spray solution. The sprayer was equipped with a 
spiral solid cone spray nozzle. 

Seed yield and oil percentage assay
Crops were harvested at the end of the growing 

season and evaluations were made for seed yield and 
oil percentage. Oil percentage was calculated using 
the soxhlet method.

Relative water content assay
Relative water content (RWC) was measured, 

from each plant leaf discs were taken and weighted 
(fresh weigh, FW). The discs were then placed in dis-
tilled water for 5 h at 25°C and then their saturated 
weights (SW) were measured. The discs were then 
dried in oven at 70°C for 24 h to calculate dry weight 
(DW). Relative water contents were calculated by fol-
lowing formula (Gupta, 2000):

RWC =  (FW -  DW)/(SW - DW)

Chlorophyll content assay
The first fully expanded leaf blades were taken 

to determine chlorophyll (Chl) contents after 30 h of 
salt stress. For the chlorophyll assay, leaf discs were 

Table 1 - Soil properties of the experimental site.

Depth	 EC (ds m-1)	 pH	 OC (%)	 TNV (%)	 K (ppm)	 P (ppm)	 Total N (%)	 Texture

0-30 cm	 4.1	 7.4	 0.71	 <10	 368	 25.9	 0.079	 Clay 
								        loam

ground with 10 ml of 80% acetone (v/v). The amount 
of chlorophyll a and b was determined spectrophoto-
metrically at 663 and 645 nm, using the method of 
Arnon (1949).

Concentration of grain zinc assay
Concentration of zinc in air-dried seeds were de-

termined by atomic absorption spectrophotometer 
(Shimadzu AA-670, Shimadzu, Kyoto, Japan) in clear 
solution obtained after treating the seed flour with 
combination of sulfuric acid, salicylic acid, selenium 
and hydrogen peroxide (H2O2).

Gibberellin and auxin assay
The methods for extraction and purification of the 

four hormones (GA3, IAA) were carried out as pre-
viously described with some modifications (Xiao et 
al, 2001; Haver et al, 2003). Leaf samples were ho-
mogenized in cold 80% aqueous methanol extraction 
medium (1:20, w/v) containing 40 mg l-1 butylated hy-
droxytoluence as an antioxidant. To determine recov-
eries during extraction and purification, the known 
amounts of authentic hormones (GA3, IAA) were used 
as internal standards and were added before ho-
mogenization. Then the homogenate was further ex-
tracted in the dark at 4°C for 16 h. The extracts were 
centrifuged at 5,000 g (4°C) for 10 min, and the super-
natant was dried under low pressure and redissolved 
in 8 ml of 0.1 M ammonium acetate (pH = 9) by using 
an ultrasonic bath and were subsequently frozen at 
-20°C overnight. After thawing, the extract was cen-
trifuged at 27,000 g for 30 min. For purification, the 
supernatant from the centrifugation step was applied 
to a preconditioned column combination of PVPP 
(polyvinylpyrrolidone; Sigma, St Louis, MO,USA), 
DEAE-Sephadex G-25 (Whatman, Maidstone, Britain) 
and Chromosep C18 column (C18 Sep-Pak cartridge, 
Waters,Milford, MA, USA). The column combination 
was eluted with 0.01 M ammonium acetate, pH = 8. 
The PVPP column was removed and acidic hormones 
were eluted from the DEAE column with 1.5M acetic 
acid and collected in a second Chromosep C18 col-
umn attached to the DEAE column. Sep-Paks were 
washed with distilled water first, and the hormones 
were eluted from the cartridges with 50% methanol 
and dried under low pressure. Finally the hormone 
fraction was redissolved in 50% methanol and sub-
jected to high-performance liquid chromatography 
(HPLC) analysis.

Antioxidant enzyme activity assay
Catalase (CAT) activity was measured according 

to Chandlee and Scandalios (1984), with modifica-
tion. The assay mixture contained 2.6 ml of 50 mM 
potassium phosphate buffer (pH = 7), 0.4 ml of 15 
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The effects of water stress, zinc foliar application 
and interaction between the factors were significant 
on seed yield (Table 2). It was demonstrated that irri-
gation after 90 and 130 mm of water evaporation 
(mild stress and severe stress) decreased seed yields 
by 14.63% and 33.12%, respectively, when data 
were compared with the control treatment. This de-
crease can be attributed to early senescence and a 
decreased seed filling period. Similar results were ob-
tained in other tests by Ghorpad et al (1993), in which 
it was reported that water stress significantly de-

Results and Discussion

creased seed yield. In addition, water stress reduces 
the transfer of nutrients from leaves to seeds, and 
given that drought accelerates seed maturation, this 
process also helps to decrease seed yield by reduc-
ing photosynthesis (Erdem et al, 2006). Furthermore, 
the highest seed yield was recorded in the treatment 
of zinc sulfate foliar application (Table 3). It seems 
that zinc sulfate has a more important role in regulat-
ing stomata and maintaining the ions balance in plant 
systems that reduce stress induced by drought. The 
interaction between water stress and zinc foliar ap-
plication showed that under non-stress conditions, 
zinc sulfate application increased seed yield (Table 
4). Under stress conditions (both mild stress and se-
vere stress) zinc sulfate application increased seed 
yield more than zinc chelate application and the con-
trol. The treatment of zinc application had superior 
results in terms of straw and biological yield. The ob-
tained results are in full agreement with the findings 
of other research by Basole et al (2003), Gupta et al 
(2003), and Kassab (2005). These results suggest that 
foliar application of nutrient solutions partially allevi-
ated the adverse effects of water stress on photosyn-
thesis and photosynthesis-related parameters and 
yield and yield components through mitigating the 
nutrient demands of water-stressed plants. Related 
research, Ved et al (2002) stated that foliar applied 
zinc enhances photosynthesis, stimulates early plant 
growth and improves nitrogen fixation, grain protein 
and yield. Water stress during the reproductive stage 
decreased evaluations for oil percentage. The highest 
oil percentage was obtained from the control treat-
ment while severe water stress decreased evalua-
tions for oil percentage by 13.20% when data were 
compared with the control treatment (Table 3). De-
creased oil percentage is attributed to a decrease in 
seed weight. Rudra naik et al (2001) have reported 
that water stress decreased seed weight and oil per-
centage of safflower plants. Oil percentage was af-
fected by zinc foliar application. Zinc improves pho-
tosynthesis and assimilates transportation to sinks 
and finally served to increase evaluations for oil per-
centage. Singh and Sinha (2005) reported that a de-
crease in oil concentration might have been caused 
by oxidation of some polyunsaturated fatty acids. The 
effect of water stress on chlorophyll content was sig-
nificant (P < 0.05) (Table 2).Comparison of means 
showed that in tests for water stress levels, the high-
est chlorophyll content was obtained under normal 

mM H2O2 and 0.04 ml of enzyme extract. The decom-
position of H2O2 was followed by the decline in absor-
bance at 240 nm. 

Glutathione peroxidase (GPX) activity was mea-
sured according to Paglia and Valentine (1997) in 
which 0.56 M (pH = 7) phosphate buffer, 0.5 M EDTA, 
1mM NaN3, 0.2 mM NADPH was added to the ex-
tracted solution. GPX catalyses the oxidation of glu-
tathione by cumene hydroperoxide in the presence 
of glutathione reductase and NADPH, the oxidized 
glutathione is immediately converted to the reduced 
form with the concomitant oxidation of NADPH to 
NADP. The decrease in absorbance at 340 nm was 
measured with a spectrophotometer.

Superoxide dismutase (SOD) activity was as-
sayed according to Beauchamp and Fridovich (1971). 
The reaction mixture contained 1.17 × 10-6 M of ribo-
flavin, 0.1 M of methionine, 2 × 10-5 M of potassium 
cyanide (KCN) and 5.6 × 10-5 M of nitroblue tetrazo-
lium salt (NBT) dissolved in 3 ml of 0.05 M sodium 
phosphate buffer (pH = 7.8).Three ml of the reaction 
medium were added to 1 ml of enzyme extract. The 
mixtures were illuminated in glass test tubes by two 
sets of Phillips 40-W fluorescent tubes in a single 
row. Illumination was started to initiate the reaction at 
30°C for 1 h. identical solutions that were kept under 
dark served as blanks. The absorbance was read at 
560 nm in the spectrophotometer against the blank. 

Statistical analysis
All data were analyzed from analysis of variance 

(ANOVA) using the GLM procedure in SAS (SAS In-
stitute, 2002). It was assumed that the residuals were 
random, homogenous and with a normal distribution 
about a mean of zero. Treatment means were com-
pared using LSMEANS (P < 0.05).

Table 2 - Analysis of variance on attributes of corn affected by water stress and zinc foliar application.

SOV	 df	 Seed yield	 Oil (%)	 Chl	 RWC	 Zn	 Gibberellin	 Auxin	 SOD	 Cat

Replication 	 3	 ns	 ns	 ns	 ns	 ns	 ns	 ns	 ns	 ns
Water stress 	 2	 **	 **	 *	 ns	 **	 **	 **	 **	 **
Error (a)	 6									       
Zinc foliar application	 2	 **	 *	 *	 ns	 **	 **	 **	 **	 **
Water stress × 
Zinc foliar application	 4	 **	 ns	 *	 **	 **	 **	 ns	 **	 **
Error (b)	 18									       
CV (%)		  14.23	 8.48	 7.48	 3.32	 8.60	 4.24	 3.46	 3.75	 2.68

*, ** and ns significant at 0.05, 0.01 probability level and no significant, respectively
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irrigation treatment and the lowest chlorophyll con-
tent was obtained after 130 mm of water evaporation 
(Table 3). This result is consistent with the results of 
Yari et al (2005), in which it was suggested that mois-
ture stress reduces leaf chlorophyll content. Also, the 
effect of zinc foliar application and the interaction be-
tween water stress and zinc foliar application was 
significant (Table 2). Also, the result showed that the 
highest chlorophyll content was record from the 
treatment of zinc sulfate foliar application (Table 3).  
The interaction between water stress and zinc foliar 
application showed that under stress conditions 
(both mild stress and severe stress) zinc foliar appli-
cation increased evaluations for chlorophyll content 
(Table 4).  In this regard, zinc sulfate foliar application 
increased chlorophyll content more than zinc chelate 
application and the control in this condition. The 
physiological characteristic of chlorophyll content is a 
good indicator of stress resistance because it affects 
the continuation of photosynthesis under water stress 
conditions (Jiang and Huang, 2002; Zhang et al, 
2006; Zahedi et al, 2012).The results showed that dif-
ferent irrigation and zinc foliar application had a non-
significant effect on relative water content RWC (Ta-
bles 2 and 3). However, RWC decreased under 
irrigation treatments of 90 and 130 mm of water 
evaporation (mild stress and severe stress). RWC is 
the appropriate measure of plant water status in 
terms of the physiological consequence of cellular 
water stress, while water potential is an estimate of a 
plant’s water status and is a useful evaluation to as-
sess water transportation in the soil-plant-atmo-
sphere continuum (Kramer, 1988). A reduction in leaf 
RWC indicates the decrease of swelling pressure in 
plant cells and reduces growth. Therefore, plant wa-
ter potential will be reduced in order to maintain the 
rate of transpiration (Karam et al, 2006). Also, the in-
teraction between water stress and zinc foliar appli-
cation was statistically significant (Table 2). Under 
stress conditions (both mild stress and severe stress) 
zinc foliar application increased evaluations for RWC 
(Table 4). Tariq et al (2004) reported that foliar appli-
cation of micro-nutrients improves crop quality and 
increases resistance in plants against biotic and abi-
otic stresses. Analysis of variance showed there was 
significant difference for each factor and in the inter-
actions between them (Table 2). Irrigation treatments 

of 90 and 130 mm of water evaporation (mild stress 
and severe stress) decreased contents of Zn in seeds 
(Table 3). In fact, water stress caused a decrease in 
transmission of photosynthetic substances to grains 
and decreased uptake minerals and subsequently re-
duced the nutrient content in grains. In this regard, 
zinc sulfate foliar application increased contents of 
Zn in seeds more than zinc chelate application and 
the control (Table 3). Other research by Modaihsh 
(1997) determined that foliar application of micronu-
trients (Fe, Cu, Zn, and Mn) in the form of sulfate 
rather than as chelate (either EDTA or EDDHA) gener-
ally resulted in higher concentrations of these ele-
ments in wheat grain (Triticum aestivum L) and both 
Zn and Mn concentrations were considered to be 
higher than others. However zinc sulfate foliar appli-
cation increased contents of Zn in seeds under mild 
and severe stress conditions (Table 4).The effects of 
water stress and zinc foliar application on gibberellin 
and auxin contents were significant (Table 2). The in-
teraction between water stress and zinc foliar appli-
cation was significant only for gibberellin (Table 2). 
Results also showed that the highest gibberellin and 
auxin contents were obtained when corn plants were 
exposed to complete irrigation (Table 3). By contrast, 
the lowest evaluations for gibberellin and auxin were 
obtained in corn plants that were exposed to severe 
stress conditions (Table 3). Plants respond to water 
stress by making various adaptations through various 
physiological and biochemical changes (Monneveux 
and Belhassen, 1996). These adaptations include 
changes in endogenous phytohormone levels, espe-
cially that of abscisic acid. Determinations of varia-
tion of auxin contents under water stress are very 
contradictory. It has been reported that water stress 
resulted in a decrease of auxin content in the leaves 
of wheat (Xie et al, 2003). But other evidence has 
shown that adaptation to water stress was accompa-
nied with an increase in auxin content (Sakurai et al, 
1985; Pustovoitova et al, 2004). This study has dem-
onstrated that water stress had significant and dif-
ferential effects on gibberellin and auxin contents in 
corn plants. Gibberellin is able to increase plant 
growth under osmotic stress (Kaur  et al, 1998); how-
ever, a decline in levels of gibberellin and auxin were 
observed in corn plants in response to water stress in 
this study. It was reported that water stress resulted 

Table 3 - The comparison of means on attributes of corn affected by water stress and zinc foliar application.

Treatments	 Seed yield	 Oil percentage	 Chlorophyll	 RWC	 Zn	 Gibberellin	 Auxin	 SOD	 Cat
	 (t ha-1)	 (%)	 Content (SPAD)	 (%)	 (mg 100g-1 grain)	 (µm mg-1 tissue DW)	 (µm  mg-1 tissue DW)	 (u mg protein-1)	 (u mg protein-1)	

Water stress									       
Complete irrigation   	 8.50c	 5.3a	 41a	 79.56a	 89a	 164a	 447a	 585c	 114c
Irrigation after 90 mm 	 11.87a	 5.3a	 39b	 76.15b	 81a	 125b	 394b	 778b	 141b
Irrigation after 130mm 	 10.85b	 4.6b	 37b	 73.23b	 49b	 98c	 333c	 1028a	 180a

Zinc									       
Untreated (0 ppm)	 8.98c	 4.96b	 38b	 75.72a	 48c	 98c	 335c	 586c	 113c
Zinc sulfate foliar 	 12.71a	 5.06a	 40a	 77.02a	 99a	 162a	 444a	 1018a	 182a
Zinc chelate foliar 	 11.20b	 5.22a	 39a	 76.20a	 72b	 126b	 396b	 787b	 140b

Values within the each column and followed by the same letter are not different at P < 0.05 by an ANOVA protected Duncan’s 
Multiple Range Test.
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in a decrease in auxin content (Yang et al, 2001; Xie 
et al, 2003). Results also showed that zinc sulfate ap-
plication increased gibberellin and auxin contents 
more than zinc chelate application and the control 
(Table 3). The interaction between water stress and 
zinc foliar application showed that under stress con-
ditions (both mild stress and severe stress) zinc foliar 
application increased gibberellin and auxin contents 
(Table 4). Zn is a precursor of the auxin (IAA) (Ooster-
huis et al, 1991). Thus, zinc foliar application served 
to increase hormones involved in biosynthesis such 
as auxin in the treated corn plants. Analysis of vari-
ance showed that there was significant difference for 
each factor and interactions between them (Table 
2).In the present study, those plants exposed to wa-
ter stress showed a significant increase in SOD and 
CAT activity in leaves (Tables 3 and 4). The enzymes 
assayed are scavengers of free radical species. SOD 
converts one form of ROS (O2

-) to another equally 
toxic one (H2O2). Hydrogen peroxide is converted to 
oxygen and water by CAT and POX, which use ascor-
bate as the hydrogen donor (Hegedus et al, 2001). 
Water stress may also lead to stomatal closure, which 
reduces CO2 availability in the leaves and inhibits car-
bon fixation (Gossett et al, 1994a,b). An increase in 
SOD activity was reported in a water stress tolerant 
basmati rice variety (Singh et al, 2007). In water stress 
conditions, zinc foliar application increased the activ-
ity of these enzymes (Table 4). Zinc sulfate applica-
tion increased antioxidant enzyme activity more than 
zinc chelate application and the control (Tables 3 and 
4). Zinc is an essential mineral nutrient and a cofactor 
of over 300 enzymes and proteins involved in cells 
(Marschner, 1986). Thus zinc foliar application served 
to increase antioxidant enzyme activity in water stress 
condition.

Table 4 - The interaction effect between water stress and zinc foliar application on attributes of corn.

Water stress	 Foliar application of Zinc	 Seed yield£	 Oil percentage	 Chl Content§	 RWC (%)	 Zn†	 Gibberellin‡	 Auxin‡	 SOD§	 Cat§

Complete Irrigation	 Untreated(0 ppm)	 11.42c	 5.05c	 37cd	 78.6cde	 75c	 168b	 450b	 440e	 98d
	 Zinc sulfate 	 14.22a	 5.48a	 45a	 80.4a	 126a	 198a	 493a	 574d	 100d
	 Zinc chelate 	 12.47b	 5.46a	 42ab	 79.7bc	 95b	 167b	 456b	 573d	 100d
Irrigation after 90 mm 	 Untreated(0 ppm)	 8.95e	 5.10a	 34cd	 74.9e	 44d	 85d	 338d	 742c	 142c
	 Zinc sulfate 	 12.72b	 5.58a	 39bc	 80.0a	 96b	 125c	 393d	 1018b	 183b
	 Zinc chelate 	 10.87cd	 5.32a	 38cd	 75.5de	 75c	 121c	 392c	 743c	 141c
Irrigation after 130mm 	 Untreated(0 ppm)	 6.57f	 4.51c	 37cd	 72.0bcd	 26e	 84d	 274e	 741c	 142c
	 Zinc sulfate 	 10.42d	 4.62bc	 40ab	 74.4cde	 75c	 124c	 392c	 1296a	 220a
	 Zinc chelate 	 8.50e	 4.60bc	 39cd	 73.3de	 45d	 86d	 389c	 1045b	 179b

Values within the each column and followed by the same letter are not different at P < 0.05 by an ANOVA protected Duncan’s 
Multiple Range Test. Units of measurement are as follows: £: (t ha-1); §: (SPAD); †: mg 100g-1 grain; ‡: (µm mg-1 tissue DW); 
§: (u mg protein-1);
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