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Abstract

In the near future, maize, sorghum, or switchgrass stovers and cereal straws will be a significant source of car-
bohydrates for sustainable biofuel production, in addition to the current use of grass silage in cattle feeding.
However, cell wall properties, including the enzymatic degradability of structural polysaccharides in industrial
fermenters or animal rumen, is greatly influenced by the embedding of cell wall carbohydrates in lignin matrix, and
the linkages between lignins, p-hydroxycinnamic acids, and arabinoxylans. Breeding for higher and cheaper bio-
fuel or silage production will thus be based on the discovery of genetic traits involved in each cell wall component
biosynthesis and deposition in each lignified tissue. Due to its considerable genetic and genomic backgrounds,
maize is the relevant model species for identifying traits underlying cell wall degradability variations in grasses.
Maize genes involved or putatively involved in the biosynthesis of cell wall phenolic compounds, cell wall carbo-
hydrates and regulation factors were therefore searched for using data available in grass, Arabidopsis, and woody
species (mostly poplar and eucalyptus). All maize ortholog genes were searched for using protein sequences and
a “blastp” strategy against data available in the www.maizesequence.org database. Genes were also mapped in
silico considering their physical position in the same database. Finally, 409 candidate genes putatively involved in
secondary cell wall biosynthesis and assembly were shown in the maize genome, out of which 130 were related to
phenolic compound biosynthesis, 81 were related to cell wall carbohydrate biosynthesis, and 198 were involved in
more or less known regulation mechanisms. Most probable candidate genes involved in regulation and assembly
of secondary cell wall belonged to the MYB (45 genes) and NAC (38 genes) families, but also included zinc finger
and HDZiplll encoding genes. While genes involved in ferulic acid cross-linkages with other cell wall components
were little known, several families putatively involved in (arabino)-xylan chain biosynthesis and in feruloyl trans-
fer were shown, including especially arabinosyl-CoA-acyltransferases, feruloyl-AX 3-1,2-xylosyl transferases, and
xylan-O-3-arabinosyl transferases. This candidate gene list, which focused on genes and orthologs known to be
involved in cell wall component biosynthesis and regulation, cannot be considered as exhaustive. Other genes,
whose role in cell wall lignification and deposition have not yet been defined, should very likely be added to the
list of candidates required for secondary cell wall assembly. Genes encoding proteins of still unknown function
should also be added to the list, as several of the latter are probably involved in lignified tissue biosynthesis and
deposition.
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Introduction

Concerns over global climate changes, together
with a growing worldwide demand for energy and the
simultaneous “short term” depletion of fossil stocks,
have demonstrated out the crucial need for alter-
native energy resources. In addition to solar, wind,
ocean wave, and nuclear energies, second genera-
tion biofuels obtained from fermentation of lignocel-
lulose materials have opened new avenues based ei-
ther on dedicated crops or recovering a large part of
agricultural and woody residues. First generation bio-

fuels based on cereal or oleaginous grains compete
with food supplies and have been recently rejected
by the European Union commissioner for “Climate
Action”. Most species considered for biofuel pro-
duction are grasses, with the use of plant straws of
C3 and C4 cereals and sugarcane bagasse, and the
whole plant use of maize, sorghum, or switchgrass.
Grasses are also the basis of energy nutrition of dairy
and meat cattle, with grazing during spring and ear-
ly autumn and silage maize feeding during the long
periods without meadow growth. In France, nearly
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85% of milk is indeed produced by cows fed several
months a year on silage maize. However, although
green biomass contains almost the same amount of
gross energy as do grains per unit of dry matter, the
stover energy value is significantly lower, only reach-
ing in wheat straws 33% of maize grain value both in
the digestive tracts of animals and in industrial en-
zymatic fermenters. The biological conversion of cell
wall carbohydrates, mainly located in the secondary
lignified plant cell walls, into fermentable sugars is
hindered by their association with lignins and p-hy-
droxycinnamic acids.

Lignification and the development of a vascular
system have allowed plants to leave aquatic habitats
and to acquire erect growth. Lignins also impart hy-
drophobicity to vascular elements allowing water and
nutriment transportation. Lignins, with cellulose, con-
tribute to the mechanical properties and structural
integrity of tissues, and lignin-deficient tracheary ele-
ments may collapse as their cell wall cannot stand
the negative pressure generated during long and/or
intensive transpiration periods (Cochard, 2002; Co-
chard et al, 2008). Finally constitutive and neoformed
lignins are involved in mechanisms related to disease
and pest tolerances. The embedding and cross-link-
ages between phenolics and carbohydrates thus pre-
vent physical access of enzymes to cell wall carbo-
hydrates and strongly limit their enzymatic hydrolysis.
Model studies, in which the degrees of polysaccha-
ride-polysaccharide and lignin-polysaccharide cross-
linkages are controlled, established that the former
primarily impede the rate of carbohydrate degrada-
tion, while the latter impede both the rate and ex-
tent of carbohydrate degradation (Ralph, 2010). In
addition, lignins adsorb hydrolytic enzymes on their
surfaces, and consequently have a second negative
effect on carbohydrate degradation. Moreover, lignin
degradation products resulting from industrial pre-
treatment inhibit ethanologenic fermentations (Keat-
ing et al, 2006; Li et al, 2008).

Grain maize or “corn” is likely the plant species
in which genetic improvements for agronomic traits
were the most remarkable during the last century
in the USA and over the last six decades in Europe.
In forage maize (Barriere et al, 1987; Barriere et al,
2004a; Barriere et al, 2005), the genetic progress in
yield was close to 0.17 t ha' per year for hybrids reg-
istered in France between 1986 and 2000 and seem-
ingly has continued up to now (1986 is the first year
with registration tests including whole plant traits).
Before 1986, forage yield improvement was correla-
tive to the genetic progress in grain and was nearly
equal to 0.10 t ha™ per year (Barriere et al, 1987).
However, a significant drift of hybrid cell wall digest-
ibility towards lower values was simultaneously ob-
served during the same period. Based on data from
the long term experiment on silage maize feeding
value and cell wall digestibility (NDFD, Neutral De-
tergent Fiber Digestibility) measurements with sheep
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at INRA Lusignan (Barriere et al, 2004a), hybrids with
a lower NDFD than the well-known old early hybrid
LG11 (NDFD = 50.2%) were 32, 63, 75, 84, and 93%
in each of the registration periods before 1981, 1989,
1994, and 1999, and in or after 1999, respectively.
This decline in average cell wall digestibility, which
has indeed been mainly observed since 1980, was
mostly a consequence of the introduction of lodent
and BSSS genetic resources in early and medium-
early line breeding, together with the phasing out of
flint lines with high cell wall digestibility but with poor
standability and yield. This decline, which was also
related to the focus of breeders on (grain) yield and
standability, has now ceased with the breeding of
specialized silage maize and the use of a digestibility
criterion in forage maize registration since 1986 in the
Netherlands and since 1998 in France. While the cell
wall degradability of the best modern hybrids does
not yet equal that of the best older types such as
INRA258, several currently registered French hybrids
have cell wall digestibility close to that of DEA-type
hybrids. However, unlike yield or stress tolerance for
which steady improvements have been observed, the
energy value of currently released silage maize va-
rieties plateaus. This is due to the fact that cell wall
degradability has not been sufficiently taken into ac-
count during this era of breeding. Maize cropping for
silage use in Europe is therefore now mostly based
on varieties bred for whole plant agronomic and qual-
ity traits, most of which have medium cell wall de-
gradability. Significant improvements are neverthe-
less occurring with the registration in the Netherlands
of early hybrids such as Aastar, Ayrro, LG30-225, etc,
with a cell wall degradability equal or close to 110%
of that of the control hybrids.

In any case, maize genetic improvement allow-
ing increased animal or biofuel production based on
the non-grain part of plants requires understanding
cell wall building rules, as well as genetic and mo-
lecular mechanisms involved in secondary wall as-
sembly and cell wall compound biosynthesis, and
finally cross-linkage determinants. Gene discovery is
thus a major pre-requisite in order to implement ef-
fective silage and biofuel breeding programs, based
on marker assisted selection (MAS), genome-wide
association studies and SNP-based (single nucleo-
tide polymorphism) investigations, genetic resource
management, and genetic engineering. Most cell
wall (gene) research has been devoted to improv-
ing paper pulping conditions towards more environ-
mental friendly processes in woody dicotyledonous
and gymnosperms plants (poplar, eucalyptus, pine,
spruce, etc). In addition, intensive investigations to
decipher cell wall assembly have indeed been based
on Arabidopsis model plant, and to a lesser extent
alfalfa. A wide set of the genes involved in cell wall
carbohydrate and phenolic compound biosynthe-
sis, and their regulation, is thus currently available
in Arabidopsis. However, a list mainly focused on
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carbohydrate related genes has also been proposed
for maize (Penning et al, 2009). Nevertheless, only
limited information is indeed available for maize and
grass cell wall gene regulation and lignified tissue
patterning in leaves and stems. Firstly, this is due to
the fact that the lignin pathway has not really been
investigated in the rice model plant, or in the more
recent Brachypodium or Setaria models, and sec-
ondly, because, in contrast to dicotyledonous plants,
the vascular system of maize and non-woody mono-
cotyledons is characterized by the absence of bifa-
cial cambium and secondary growth. The major role
of p-hydroxycinnamates in secondary wall structure
is also specific to grass plants. However, the emer-
gence and evolution of lignified and vascular tissues
was indeed based on a preexisting poly-phenolic
pathway (Boyce et al, 2003), followed by millions of
years of divergent evolution in grasses and dicoty-
ledons. Many results obtained in plant genetics and
genomics of lignification have nevertheless illustrated
a significant commonality in cell wall carbohydrate
and phenolic compound biosynthesis in all plants.
However, even if they have not yet been established,
significant differences between species groups could
be particularly expected for genomic traits involved
in regulation and assembly of lignified tissues. The
transcription factors families have disproportionaly
expanded, and the regulatory networks diverged, so
that the eudicot model is not wholly generalizable to
grasses (Handakumbara and Hazel, 2012).

Objective and methodologies

The objective of this investigation was therefore
to describe the composition and organization of the
maize secondary cell wall, and then to list maize can-
didate genes possibly involved in the corresponding
metabolic pathways. Maize orthologs of transcription
and regulation factors described in other species,
and mostly dicotyledonous species, were especially
considered as candidates. An e-value at least low-
er than e’ was retained during ortholog searches
based on protein sequences. Maize candidate genes
were finally put into eight groups including 1) genes
involved in monolignol and p-hydroxycinnamic acid
biosynthesis, and those involved in monolignol po-
lymerization, 2) genes involved in cellulose biosynthe-
sis and cellulose fiber assembly, 3) genes involved
in arabinoxylan and related compound assembly, 4)
genes involved in feruloylation and acylation of cell
wall components, 5) genes of the shikimate pathway,
6) genes of the S-adenosyl-L-methionine cycles, 7)
MYB, NAC, and transcription factors involved in cell
wall regulation, and 8) miscellaneous genes involved
in lignified tissue biosynthesis or assembly. These
eight different sets of genes likely are not equally
important in determining cell wall degradability varia-
tions. Gene GRMZM names and physical positions
were based on the maize B73 sequence (www.maiz-
esequence.org, release v2 5b.60). The consensus
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physical map used to illustrate gene repartition on the
maize genome was drawn with markers mapped dur-
ing the QTL investigations at INRA Lusignan (Méchin
et al, 2001; Roussel et al, 2002; Génoplante unpub-
lished data, 2007; Barriere et al, 2008; Riboulet et al,
2008a; Barriere et al, 2012; Courtial et al, 2013). Sev-
eral markers were however added in areas surround-
ing centromers based on their physical position given
in the MaizeGDB database (all IDP markers), as these
locations, in which recombinations are uncommon,
were poorly marked.

Phenolic constituents of maize and grass cell
walls

The lignified secondary wall of grasses is a com-
posite material with phenolic compounds, cellulose
microfibrils, an amorphous matrix consisting pre-
dominantly of glucurono-arabinoxylans, and only very
few pectins. Phenolic compounds are comprised of
lignins and cross-linked p-coumaric (pCA) and ferulic
(FA) acid derivatives, along with the array of FA dehy-
drodimer (diFA) derivatives.

Grass lignins result from the combinatorial radical
coupling of p-coumaryl, coniferyl, and sinapyl alco-
hols, giving rise to p-hydroxyphenyl (H), guaiacyl (G),
and syringyl (S) monomeric units. The average rela-
tive frequencies of each H, G, and S unit released by
thioacidolysis of native lignins of mature maize inter-
nodes were shown to be nearly equal to 3, 37, and
60%, respectively (Lapierre, 1993). A large range of
variation in monomer proportions was nevertheless
shown between maize lines and the S/G ratio ranged
between 1.0 and 1.8 (Méchin et al, 2005). In addition,
significant variations in H unit proportions were also
shown (Riboulet et al, 2008b). The H, G and S units
of grass lignins are interconnected through labile
-O-4 ether bonds representing, depending on lines,
from 15 to 25% of between-monomer linkages, and
through a series of resistant carbon-carbon and bi-
phenyl ether linkages. While lignins are often referred
to as branched three-dimensional structures, lignins
are in fact largely linear polymers. The two only known
branching structures in lignins are the 5-5 and 4-O-
5 bonding patterns, which cannot be formed without
the participation of at least one G or H unit (Ralph
et al, 2008a). Between these branching points, there
are linear lignin fragments made of monomers essen-
tially linked by B-B, B-5, and B-O-4 linkages. The low,
but significant amount of H units, which is nearly five
times higher than in dicotyledonous plants, impact
the properties of the lignin polymer as these units in-
crease the frequency of resistant inter-unit bonds. In
addition, the degree to which lignin polymers incor-
porate various phenolics in place of the three regular
constitutive monolignols is likely underappreciated
(Ralph, 2010). The incorporation of free FA in lignins
through bis-8-O-4 cross-coupling, which occurs at
very low, but significant, levels in normal maize plants
but may build up in CCR- and CAD-deficient plants,
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provides a third branching point in lignin polymers
(Ralph et al, 2008b; Barriere et al, 2013). In addition
to FA and hydroxycinnamaldehydes, unusual mono-
mers, including acylated hydroxycinnamyl alcohols,
dihydro-hydroxycinnamyl alcohols, hydroxybenzal-
dehydes and other hydroxycinnamic acids, can be in-
corporated in lignins of wild-type plants (Vanholme et
al, 2012). Moreover, currently obtained results seem-
ingly show that plants could tolerate shifts in lignin
composition with no or lower impact on growth than
observed for reduced lignin contents (Eudes et al,
2012; Vanholme et al, 2012). The fact that plants can
readily incorporate alternative unusual monomers
with modified physicochemical and stereochemical
properties could be a basis for original plant improve-
ment for both animal feeding and biofuel production.

The participation of p-hydroxycinnamates in cell
wall composition and organization is a specific trait
of grass plant lignification. Among cell wall-linked p-
hydroxycinnamates, p-coumarate is mainly esterified
to the y-position of the phenylpropane side-chain of S
lignin units, even if 10% of p-coumarate can be found
on maize G units (Grabber et al, 1996; Lu and Ralph,
1999). Most p-coumarate accretion occurs in tandem
with lignification and p-coumarate accumulation is
thus a relevant indicator of lignin deposition. In maize,
S unit acylation occurs at the monolignol level, and
from 25 to 50% of S lignin units may thus be acyl-
ated by pCA (Lu and Ralph, 1999; Morreel et al, 2004;
Grabber and Lu, 2007; Martinez et al, 2008; Ralph et
al, 2008a). Acylation has a marked influence on the
bonding mode of S lignin units, on the spatial orga-
nization of lignins and consequently on their capacity
to interact with polysaccharides. During monolignol
polymerization, sinapyl alcohol is only slowly oxi-
dized by maize peroxidases. Conversely, an oxida-
tion shuttle operates in acylated conditions because
the pCA component of the S-pCA conjugate is readily
oxidized, with the subsequent transfer of its oxidation
state to sinapyl alcohol (Boudet, 2000; Ralph et al,
2004; Hatfield et al, 2008).

Even if ferulate is at first the major p-hydroxycin-
namic derivative in young grass cell walls, at least 50
to 70% of the alkali-labile ferulate deposition occurs
during secondary wall lignification (liyama et al, 1990;
Morrison et al, 1998; MacAdam and Grabber, 2002;
Grabber et al, 2004). Ferulic units are primarily esteri-
fied to glucurono-arabinoxylans, and lignins and ara-
binoxylans are secondarily bridged through FA ether-
linkages at the B-position of G units. Ferulates thus
provide points of growth for the lignin polymer, acts
as lignin nucleation sites, and direct cell wall cross-
linking (Ralph et al, 1992; Jacquet et al, 1995; Ralph
et al, 1995; Ralph, 2010). Moreover, the presence of
ferulates linked to arabinosyl side-chains of arabi-
noxylans provides a convenient and reliable way of
cross-linking these polysaccharide chains. Over 50%
of wall ferulates can undergo dehydrodimerization
and arabinoxylans are thus extensively cross-linked
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by ferulate dimerization in mature cell walls (Grabber
et al, 2004).

Large variations in phenolic component contents
have been shown between maize inbred lines or be-
tween hybrids. The content in ADL/NDF nearly dou-
bled between 4 and 8% in maize lines having extreme
values [NDF and ADL are neutral detergent fiber and
acid detergent lignin according to Goering and van
Soest (1970), respectively]. A similar two-fold varia-
tion was also observed for pCA content, which could
be partly related to the variation in lignin contents.
Despite their (relatively) low amounts, significant
variations have been shown for esterified and etheri-
fied FA (esterFA and etherFA) releases after alkaline
hydrolysis, as was also highlighted for 8-O-4 and 5-5
diferulates. Finally, variation for the recovery yield of
each H, G or S lignin-derived monomer after nitro-
benzene oxidation was similarly of a two-fold range
between maize lines, with significant consequences
on the polymer arrangement and spatial organization.

As a consequence of variable phenolic compo-
nent contents and organizations, large genetic varia-
tions in the in vivo or in vitro cell wall digestibility of
maize plants have been shown, with small genotype
X environment interaction effects compared to main
effects. From a long term experiment based on 478
hybrids, the in vivo cell wall digestibility in maize (es-
timated as NDF digestibility, or NDFD) nearly doubled
from 32.1 to 60.4% with an average value equal to
48.8 % (Barriere et al, 2004a). The in vitro cell wall di-
gestibility (IVNDFD) also nearly doubled from 22.1 to
39.2% with an average value equal to 32.5% in a set
of 26 lines (Barriere et al, 2009) representing probably
the largest known variation for this trait [[IVNDFD is
estimated according to Struik (1983) as (100 x (ES -
(100 - NDF)) / NDF), based on the enzymatic solubility
(ES) of Aufrere and Michalet-Doreau (1983)].

Lignin content is the first trait that has been relat-
ed to cell wall degradability, but breeding for a much
reduced lignin content has too many negative con-
sequences on other agronomic qualities. Moreover,
variations in lignin content are not the only determi-
nants explaining variations in cell wall degradability.
This fact was especially highlighted after correlation
and QTL analyses (Barriere et al, 2008; Riboulet et
al, 2008b; Zhang et al, 2011a; Barriere et al, 2012),
and from cell wall model studies (Grabber et al,
1998; Grabber et al, 2005). Variable colocalizations
between cell wall degradability QTLs and phenolic
compound QTLs were indeed shown, with several
cell wall degradability QTLs that did not colocalize
with lignin QTLs. Corroborating negative correla-
tions between cell wall degradability and etherFA
releases, and QTL colocalizations (Casler and Jung,
1999; Méchin et al, 2001; Lam et al, 2003; Riboulet
et al, 2008b; Jung and Phillips, 2010; Taboada et al,
2010; Jung et al, 2011; Barros-Rios, 2012), the role of
ferulate cross-linkages was "tentatively estimated to
account for nearly one half of the inhibitory effects of
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lignin on cell wall fermentation" (Grabber et al, 2009).
Breeding for a reduced level of ether-linked ferulate
has thus improved cell wall degradability in perennial
grasses (Casler and Jung, 1999; Casler et al, 2008).
Similarly, breeding for reduced diferulate contents in
maize pith increased cell wall polysaccharide degrad-
ability (Barros-Rios et al, 2012). Moreover, ferulate
cross-linkages were shown to be involved in stalk
stiffness (Grabber et al, 1995; Grabber et al, 2000;
MacAdam and Grabber, 2002). While nearly one half
of intake variations in cows were explained by cell
wall degradability (Barriere et al, 20083), scattered but
convergent results support the hypothesis that the
rest of the genetic variations in intake are related to
plant tissue friability and susceptibility to crushing.
Consequently, ferulate cross-linkages likely impede
silage maize intake as they decrease plant friability
(Ciba-Semences, 1990, 1995; Barriere et al, 1995;
Jung and Allen, 1995; Barriére et al, 2004b; Fernan-
dez et al, 2004). Correlations and QTL colocalizations
pointed out a negative effect of pCA content on cell
wall degradability (Barriere et al, 2008; Riboulet et al,
2008b; Zhang et al, 2011a; Barriére et al, 2012). In
addition to being a probable direct effect of S unit
acylation on lignin polymer geometry, pCA content is
likely also a relevant indicator of intensity and length
of secondary tissue lignification. Finally, attempts to
understand the impact of lignin structure, commonly
described by ratios between H, G, and S units, on
the susceptibility of the cell wall to enzymatic hy-
drolysis have led to conflicting results (Méchin et
al, 2000; Grabber et al, 1997; Grabber et al, 2009).
However, based on correlations and QTL colocaliza-
tions, increased proportions of H units and S units
likely contribute, for different reasons, to lowering of
cell wall degradability (Riboulet et al, 2008b). As was
considered for pCA contents, a higher proportion of
S units in lignins might indicate a higher proportion
of mature secondary wall in tissues. Lignin structure
can also be characterized by the yield of monomers
released after thioacidolysis, and a greater propor-
tion of B-O-4 linkage in the lignin polymer has been
shown to be negatively correlated with cell wall de-
gradability (Zhang et al, 2011a). This latter fact could
be explained by the more extended shape of 3-O-4
lignins, maximizing the masking effect on carbohy-
drate polymers, in comparison to the more globular
shape of condensed 5-5 and B-5 lignins (Besombes
and Mazeau, 2005).

Genes involved in the upstream parts of cell
wall carbohydrate biosynthesis

Cellulose and glucurono-arabinoxylans are the
main constituents of lignified secondary walls. Puta-
tive genes encoding for enzymes catalyzing the early
steps of cellulose and xylan synthesis have been
identified in different plant species. The nucleotide
sugar interconversion pathway comprises a set of
enzymatic reactions by which plants synthesize ac-
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tivated monosaccharides as precursor elements of
cell wall polysaccharides from photosynthesis and
D-fructose-6-P (Reiter and Vanzin, 2001; Reiter,
2008). UDP-D-glucose (UDP-D-Gic), which is at the
basis of cellulose and arabinoxylan biosynthesis, is
produced from D-fructose-6-P via D-glucose-6-P
and D-glucose-1-P in three successive reactions
catalyzed by phosphoglucose isomerases, phospho-
glucomutases, and UDP-D-Glc pyrophosphorylases.
UDP-D-Gic is also available from sucrose and uridine
diphosphate (UDP) in the reversible reaction cata-
lyzed by sucrose synthases. Nucleotide sugars are
then the substrates which are used for the elonga-
tion of carbohydrate chains by UDP-glycosyltransfer-
ases (Kawakita et al, 1998; Gibeaut, 2000). All these
genes, which are indeed key components in multiple
plant metabolisms, were not a priori considered as
putative candidates involved in variation of cell wall
degradability. However, a member of one of these
multigene families might be specifically involved in
a metabolon devoted to cellulose or arabinoxylan
biosynthesis, and therefore could be involved in cell
wall variation with consequences on biofuel pro-
duction capabilities. A nucleotide sugar transporter
(OsNST1 or Os02g40030) was thus shown underly-
ing the brittle-culm-14 (bc14) mutation in rice (Song
et al, 2011; Zhang et al, 2011b). Mutant bc74 plants
have reduced cellulose content, irregular orientation
of cellulose microfibrils, and higher xylan extractabil-
ity. This set of traits improves the extractability of all
cell wall components. Only two close orthologs were
shown in maize (Supplementary Table 1).

Genes involved in cellulose biosynthesis and
cellulose fiber organization

Cellulose is comprised of hydrogen-bonded
-1,4-linked glucan chains which are synthesized at
the plasma membrane by large cellulose synthase
(CesA) complexes, using UDP-d-glucose as a pre-
cursor. Twelve CesA genes have been described in
maize (Appenzeller et al, 2004), and further shown in
the maize sequence database. Deficiency in one or
another CesA gene impedes cellulose biosynthesis
and modifies the orientation or organization of cellu-
lose microfibrils, with consequences on the mechani-
cal quality of plant leaves or stems. In Arabidopsis,
the two irregular xylem mutants /RX7 and IRX3 have
a reduced stiffness of mature stems correlatively to
a cellulose defect in secondary cell walls (Turner and
Somerville, 1997). The IRX1 and IRX3 Arabidopsis
genes encode the catalytic subunits of the cellulose
synthase isoforms CesA8 and CesA7, respectively,
with the latter being specifically expressed in xylem
tissue (Taylor et al, 1999; Taylor et al, 2000). In addi-
tion to CesA genes, other genes also impact cellulose
micro-fibril deposition and organization. The fragile
fiber FRA1 Arabidopsis mutant, which has a large
reduction in fiber mechanical strength without appar-
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ent alteration in cell wall composition, and the rice
brittle culm12 mutant are altered in kinesin proteins
(Zhong et al, 2002a, Zhang et al, 2010). Kinesins are
ATP-driven microtubule-based motor proteins with
diverse functions in plant growth and developmen-
tal processes. These functions include the mediation
of cortical microtubule activity and the orientation
of cellulose microfibrils during differentiation of xy-
lem cells (Zhong et al, 2002a). The fragile fiber FRA2
mutant is altered in a gene encoding a katanin-like
protein that regulates fiber cell length and wall thick-
ness. The secondary walls of FRA2 fiber cells lack
distinct S1, S2, and S3 layers thus indicating that this
katanin was considered to be essential for the forma-
tion of distinct layers of cellulose microfibrils during
secondary wall thickening (Burk et al, 2001; Burk and
Ye, 2002). FRAT1 and FRA2 both have orthologous
genes in maize, whose involvement in cellulose de-
position is still unknown. Rice brittle culm1 and maize
brittle stalk2 mutants, which have reduced mechani-
cal strengths, are affected in orthologs of COBRA-
like proteins encoding putative glycosylphosphati-
dylinositol-anchored proteins (Li et al, 2003a; Ching
et al, 2006; Sindhu et al, 2007; Dai et al, 2011). These
COBRA-like proteins were considered to be involved
in a patterning of lignin-cellulose interactions that
maintain organ flexibility rather than having a direct
role in cellulose biosynthesis, even if the cellulose
content was reduced in mutant plants (Sindhu et al,
2007). Supporting data is expected from studies of
other rice brittle mutants which are similarly altered
in cellulose deposition in the cell wall or in cellulose
synthesis (Xu and Messing, 2008). In addition, KOR-
RIGAN mutants have irregular xylem and the corre-
sponding encoded protein is supposed to have a role
in processing of the growing cellulose microfibrils or
release of the cellulose synthase complex (Szyjano-
wicz et al, 2004). Moreover, it was considered that
KORRIGAN activity facilitates cellulose biosynthesis
in a way that increases the amount of non-crystalline
cellulose (Takahashi et al, 2009), which is the prefer-
entially hydrolysed part of cell wall cellulose. Finally,
two chitinase-like proteins CTL1 (At1g05850) and
CTL2 (At3g16920) have been shown to be involved in
regulation and biosynthesis of cell wall carbohydrates
(Zhong et al, 2002b; Hossain et al, 2011). Mutations
in both CLT71 and CLT2 genes induced ectopic de-
position of lignin (CTL7 also named ELP1 for Ecto-
pic Deposition of Lignin in Pith 1, and POMT1). The
CTL2 gene was shown predominantly expressed in
stems. These two CTL genes encode proteins which
have no chitinase activity, and have the same unique
ortholog in the maize genome, located in bin 7.03.
Associations of cellulose with hemicelluloses are
important for microfibril spacing and for maintaining
cell wall tensile strength. The two latter chitinase-like
proteins were considered to play a key role in estab-
lishing interactions between cellulose microfibrils and
hemicelluloses (Sanchez-Rodriguez et al, 2012). In
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fact, many components are associated with the CesA
complexes, some of which are specific to lignified
secondary wall assembly (Endler and Persson, 2011).
While several of these gene functions can induce dif-
ferences in mechanical stem stiffness, it is still un-
clear whether such variations can induce differences
in intrinsic cell wall degradability. However, variation
in mechanical tissue quality intake have been con-
sidered to be involved in the duration of chewing and
silage intake for dairy cows (Barriere et al, 2004b;
Fernandez et al, 2004; Barriére et al, 2009). A lower
mechanical reistance of tissue would also reduce the
cost of biomass crushing in industrial processes. As
a whole, 23 maize genes were shown with probable
or putative function in cellulose biosynthesis, deposi-
tion, and fiber organization (Supplementary Table 1).

Genes involved in arabinoxylan biosynthesis

Hemicellulose polysaccharides are formed from
UDP-D-glucose in the Golgi apparatus and are ex-
ported to the external surface of the membrane in
Golgi vesicles (Dennis and Blakeley, 2000). UDP-D-
xylose is thus produced from UDP-D-glucose in a
set of two reactions. UDP-D-glucose is converted
into UDP-D-glucuronic acid (UDP-D-GIcA) in a reac-
tion catalyzed by UDP-D-glucose dehydrogenases
(G6DH). UDP-D-GIcA is next converted into xylose
in a reaction catalyzed by UDP-D-GIcA decarboxyl-
ase. In addition, UDP-D-xylose can be converted into
UDP-L-arabinose in a reversible reaction catalyzed
by an UDP-D-xylose-4-epimerase. In Arabidopsis, a
UDP-D-xylose-4-epimerase gene was shown to be
affected in the MUR4 mutant (Burget et al, 2003),
which showed a 50% reduction in L-arabinose in
leaf cell walls. The UDP-L-arabinose produced by
the UDP-D-xylose-4-epimerase is in the pyran form
and requires a UDP-arabinopyranose mutase (UAM)
to be converted to UDP-L-arabinofuranose, which is
the form transferred to the xylan backbone (Konishi
et al, 2007; Konishi et al, 2010). UAM were shown
to be encoded by genes of the reversibly glycosyl-
ated polypeptide/glycosyltransferase 75 family. RNA
interference lines in rice targeting members of this
family showed a decreased content in arabinofura-
nose in their wall (up to 44%) and a reduced level
of xylan substitution (Konishi et al, 2011). In addition,
the involvement of UDP-sugars in the biosynthesis
pathway of hemicellulose polysaccharides could
strengthen the possible and simultaneous involve-
ment of UDP-arabinose in feruloylated arabinoxylan
formation (Buanafina, 2009).

Biosynthesis of the B-1,4-xylan backbones is
catalyzed by UDP-D-xylose:1,4-3-D-xylan 4-3-D-
xylosyltransferase ("xylan synthases", GT43 glycos-
yltransferase family), using uridine 5’-diphosphoxy-
lose (UDP-Xyl) as the donor substrate (Urahara et al,
2004). In Arabidopsis, the IRX9 and IRX14 mutations
result in a deficiency in xylan xylosyltransferase (XylIT)
activity, thus leading to a defect in the elongation
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of the xylan backbone (Brown et al, 2007; Lee et al,
2007a). Furthermore, co-expression of Arabidopsis
IRX9 and IRX14 in tobacco BY2 cells lacking xylan
resulted in an increase in xylosyltransferase activity
onto a Xyl4 acceptor (Lee et al, 2012). Several genes
of the glycosyltransferase GT43 family were thus
shown to be more specifically expressed in grass-
es (Mitchell et al, 2007), corresponding to plausible
maize candidate genes encoding xylan xylosyltrans-
ferases. In addition, the /IRX70 mutants of Arabidop-
sis have similar characteristics to those of the IRX9
mutant, suggesting that IRX10-like glycosyltransfer-
ases (GT47 family) could also play a role in the elon-
gation of the xylan backbone (Brown et al, 2009; Wu
et al, 2009; Oikawa et al, 2010). Mutants in the rice
IRX10 orthologous gene were recently reported not
to be affected in the length of their xylan polymer,
despite a reduction both in the xylose and the xylan
contents (Chen et al, 2012a). A direct role of IRX10
in xylan elongation seems therefore unlikely. While
no changes were simultaneously observed in lignin
content, the rice Os/IRX70 mutant also displayed a
higher cell wall saccharification efficiency (Chen et al,
2012a). IRX10-like genes may have indeed a different
function in grasses than in Arabidopsis. Members of
the GT47 family were proposed to carry out in grass-
es both xylan a-1,2- and/or a-1,3-arabinosyl trans-
ferase activities, allowing the transfer of an arabinosyl
residue onto an X(X) chain (Mitchell et al, 2007). Nev-
ertheless, the involvement of members of the GT47
family in the transfer of arabinose onto xylan is still
only hypothetical. In addition, several members of the
GT61 family (clade A) were shown to be xylan O-3
arabinosyltransferases in wheat and rice (Anders et
al, 2012). Based on RNA interference, the deregula-
tion of one GT61 gene induced a decrease in a-1,3
linked arabinose, but also in total arabinoxylans. The
latter fact suggested a substitution requirement for
continued backbone synthesis. Other members of
the GT61 family were found in rice to be B-(1,2) xy-
losyltransferase acting on arabinosyl residues linked
to xylans on C3 (Chiniquy et al, 2012), with orthologs
in maize. Members of the GT8 glycosyltransferase
protein family are also involved in the biosynthesis
of secondary cell wall xylans. The Arabidopsis IRX8
mutant has thus a 60% reduction in xylan content
(Persson et al, 2007). In poplar, two GT8 members
were shown abundantly and specifically expressed
in the differentiating xylem. RNAi down-regulated
lines for both GT8 glycosyltransferase genes had a
nearly 33% reduction in stem wood xylan content, no
change in cellulose quantity, and an increase in lignin
content ranging between 10 and 25%. These trans-
genic plants exhibit thinner fiber cell walls in stem
xylem, a brittle wood phenotype, and reduced stem
modulus of rupture (Li et al, 2011a). Xylan and car-
bohydrate content and organization in the secondary
cell wall are thus likely, with ferulate cross-linkages,
more important factors than lignin content affecting
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the stiffness and fracture strength of tissue, with very
probable consequences on forage intake by cattle.

Arabinoxylans in maize (and grasses) are in fact
glucurono-arabinoxylans, with xylan substitution
by arabinose on the C2 and/or C3 position, and by
(4-O-methyl-) glucuronosyl on C2. Candidate genes
for (4-O-methyl-) glucuronic transfer can be found
in the GT8 family since xylans of Arabidopsis dou-
ble mutants in the GT8/GUX genes were shown to
be devoid of glucuronosyl substitution (Mortimer et
al, 2010). Three orthologs of the Arabidopsis genes
GUX1 (At3g18660), GUX2 (At4g33330), and GUX3
(At1g77130), which encode proteins located in the
Golgi apparatus, with a glucuronosyltransferase ac-
tivity, were shown in the maize genome. The acetyla-
tion of xylan backbones at C-2 and/or C-3 positions
could affect about 40% of xylosyl residues (Ebring-
erova et al, 2005; Lee et al, 2011a; Manabe et al,
2011; Gille and Pauly, 2012; Saulnier et al, 2012). The
biological significance of polysaccharide O-acetyla-
tion is not fully known, but acetylation was shown
to affect the physicochemical properties of cell wall
xylans. Moreover, the presence of acetyl esters neg-
atively impedes biomass enzymatic saccharification,
and the release of acetate and conversion products
of acetate also are inhibitory to the micro-organisms
used during cell wall sugar fermentation into ethanol
(Manabe et al, 2011; Gille and Pauly, 2012). Genes
catalysing the O-acetylation of xylan have long been
unknown in plants, while it has been shown that the
CAS1 gene from the yeast Cryptococcus neoformans
was involved in the O-acetylation of its main capsular
polysaccharide (Janbon et al, 2001). Four orthologs
of the Cap1s encoded protein were recently shown
in Arabidopsis, which are regulated by the NAC fac-
tor SND1 (Lee et al, 2011a). These four REDUCED
WALL ACETYLATION genes (RWAT7-4) have close
sequence similarities. RWA71, RWA3 and RWA4
genes were shown to be expressed in both xylem
cells and interfascicular fibers, while RWA2 was only
expressed in xylem cells. RWA2 mutant plants had
an overall acetylation reduction of 20% in wall poly-
mers including xylans (Manabe et al, 2011). A sec-
ond family of protein involved in plant polysaccharide
O-acetylation was identified, based on investigations
with the AXY4 mutants of Arabidopsis which lacked
O-acetyl-substituents on xyloglucan chains (Gille et
al, 2011). The AXY4 (TBL27) and AXY4-like (TBL22)
genes belong to the trichome birefringence-like (TBL)
family (Bischoff et al, 2010a), which includes 46 mem-
bers in Arabidopsis. Other members of the TBL family
were proposed to encode additional wall polysaccha-
ride specific O-acetyltransferases (Gille et al, 2011;
Gille and Pauly, 2012). However, the latter fact has
not yet been established, and similarly the possible
role of maize orthologs in xylan O-acetylation is still
hypothetical.

Taking into consideration the genes involved in
xylose, arabinose, and arabinoxylan chain biosyn-
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thesis and acetylation, 57 genes were shown in the
maize genome, most of which had transferase activi-
ties (Supplementary Table 2).

Genes involved in the shikimate pathway, up-
stream the monolignol pathway

In plants, the shikimate pathway links the carbo-
hydrate metabolism to the biosynthesis of aromatic
amino acids (phenylalanine, tyrosine, and tryptophan)
and, consequently, to the phenylpropanoid pathway.
In the first step, phosphoenolpyruvate and erythrose-
4-phosphate react to form 3-deoxy-D-arabinohep-
tulosonate-7-phosphate (DAHP), in a reaction cata-
lyzed by the DAHP synthase. DAHP is transformed to
3-dehydroquinate (DHQ), in a reaction catalyzed by
the DHQ synthase. DHQ is dehydrated to 3-dehydro-
shikimic acid by the dehydroquinase, which is finally
reduced to shikimic acid by the shikimate dehydroge-
nase. The next enzyme involved is the shikimate ki-
nase, which catalyzes the ATP-dependent phosphor-
ylation of shikimate into shikimate 3-phosphate. The
shikimate 3-phosphate is coupled with phosphoenol
pyruvate to give the 5-enolpyruvylshikimate-3-phos-
phate in a reaction catalyzed by the 5-enolpyruvyl-
shikimate-3-phosphate (EPSP) synthase. Then, the
5-enolpyruvylshikimate-3-phosphate is transformed
into chorismate by a chorismate synthase, and cho-
rismate gives rise to prephenate and arogenate in
two reactions, the order of which has not yet been
established, catalyzed by the chorismate mutase and
the prephenate aminotransferase, respectively, us-
ing glutamate as the nitrogen source. Phenylalanine
and tyrosine are finally produced from arogenate in
reactions catalyzed by the arogenate/prephenate
dehydratase (ADT/PDT) and arogenate/prephenate
dehydrogenase (ADH/PDH), respectively (Maeda and
Dudareva, 2012; Vanholme et al, 2012). Genes en-
coding enzymes of this pathway have been described
in a more or less reduced number of plant species,
allowing the search for orthologs in maize. The car-
bon flow in the shikimate pathway, the regulations of
the shikimate pathway genes, and the phenylalanine
(and tyrosine) supply to PAL (and TAL) enzymes, may
thus directly affect biosynthesis of phenylpropanoid
compounds, including monolignols. For the shikimate
pathway, 28 genes were found in the maize genome,
but all the members of each multigene family are
probably not involved in aromatic amino acid supply
to the monolignol pathway (Supplementary Table 3).

Genes involved in the monolignol biosynthesis
pathway

The first step of monolignol biosynthesis, which
occurred downstream the shikimate pathway, is the
deamination of L-phenylalanine into cinnamic acid.
Successive steps including hydroxylation and meth-
ylation on the aromatic ring further lead to the produc-
tion of the three monolignols which are then exported
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to the cell wall and polymerized into lignins. Most
genes involved in monolignol biosynthesis belong to
small multigene families, with different members pos-
sibly involved in different metabolons corresponding
to each monolignol biosynthesis and/or to their bio-
synthesis in each type of lignified tissue. However,
not all family members are likely involved in consti-
tutive lignin biosynthesis, and some members prob-
ably correspond to biotic or abiotic stress-response
lignins. Some members of the upstream part of the
pathway could also be specifically involved in the
biosynthesis of other phenolic compounds such as
suberins or flavonoids. Moreover, lignin pathway en-
zymes are likely organized as endoplasmic-reticulum-
associated multi-enzyme complexes (Winkel, 2004).
The probable different enzymatic complexes should
function as different metabolons, each dedicated to
the production of the different phenylpropanoid end-
compounds (Winkel, 2004). Each member gene in a
multigene family could thus be differentially involved
in different metabolons, with differential regulation
mechanisms.

The deamination of L-phenylalanine into cinnamic
acid is catalyzed by a phenylalanine ammonia ly-
ase (PAL) enzyme. Maize PALs also have a tyrosine
ammonia lyase (TAL) activity (Higuchi et al, 1967;
Roesler et al, 1997), catalyzing tyrosine deamination
into pCA. Ten PAL genes are present in the maize
genome, corresponding to three groups of prob-
ably duplicated genes, plus an isolated gene which
has a more distant sequence. A one-bp deletion in
the second exon of the ZmPAL gene, introducing
a premature stop codon, has been associated with
higher plant digestibility (Andersen et al, 2007), pos-
sibly highlighting a major role of this member in the
family. The hydroxylation of cinnamic acid is then
catalyzed by a cinnamate 4-hydroxylase (C4H, two
genes) and the resulting p-coumaric acid is then con-
verted into coumaroyl-CoA by a 4-CoA ligase (4CL,
two genes). In Arabidopsis, the down-regulation of
the 4CL1 gene reduced the G unit content in lignins,
but did not affect the S unit content (Lee et al, 1997).
This fact strengthened the existence of metabolons
with the preferential or specific involvement of differ-
ent members of each multigene family in the biosyn-
thesis of each monolignol and/or their biosynthesis
in given tissues. The conversion of coumaroyl-CoA
into caffeoyl-CoA through the formation of shikimate
(or quinate) esters involves a hydroxycinnamoyl-CoA
shikimate/quinate  hydroxycinnamoyl transferase
(HCT, two genes) also having a reverse action, and a
p-coumaroyl-shikimate/quinate 3-hydroxylase (C3H,
two genes) grafting the hydroxyl residue on the aro-
matic ring (Schéch et al, 2001; Hoffmann et al, 2003;
Hoffmann et al, 2004; Mahesh et al, 2007; Shadle
et al, 2007). An alternative route towards the 3-hy-
droxylation of the aromatic ring has been shown in
poplar. The heterodimeric C4H/C3H protein complex
catalyzes the conversion of p-coumaric acid into caf-
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feic acid (Chen et al, 2011), allowing the production
of caffeoyl-CoA in a reaction catalyzed by a 4CL. The
conversion of caffeoyl-CoA into feruloyl-CoA is then
catalyzed by caffeoyl-CoA O-methyltransferases
(CCoAOMT, five genes), but CCoAOMT4, which is in
duplicate position with CCoAOMT5, appeared to be
of little importance in constitutive lignification (Guil-
laumie et al, 2007a; Guillaumie et al, 2007b; Riboulet
et al, 2009). Caffeoyl-CoA and feruloyl-CoA are two
hub-compounds, towards the synthesis of coniferyl
and sinapyl alcohol, and also ferulate derivatives.

Conversions of activated p-coumaroyl-, caffeoyl-,
and feruloyl-CoA compounds into aldehydes are
mainly driven by the ZmCCR1 cinnamoyl-CoA reduc-
tase, even if a ZmCCR2 gene is present in the maize
genome. Similarly, the reduction of p-hydroxy-cin-
namaldehydes into alcohols is also mainly catalyzed
by the ZmCAD2 cinnamyl alcohol dehydrogenase,
while the role of ZmCAD1 is not really understood.
These two types of CAD genes and proteins were
described based on investigations in eucalyptus.
EgCAD1-type proteins are short-chain alcohol dehy-
drogenases (Jornvall et al, 1995; Goffner et al, 1998),
which are active as monomers (Hawkins and Boudet,
1994). EgCAD2-type proteins are zinc-containing
long-chain alcohol dehydrogenases active as dimers
(Jornvall et al, 1987; Hawkins and Boudet, 1994). An
EgCAD1-type CAD activity has been described in
maize by Kanazawa et al (1999), while an EQCAD1-
type enzyme was proven to be involved in the synthe-
sis of coniferyl alcohol in tobacco cell wall (Damiani
et al, 2005). The major roles of both ZmCCR1 and
ZmCAD2 in the two last steps of monolignol biosyn-
thesis are highlighted by the effects of correspond-
ing mutants. ZmCAD2 mutations have been associ-
ated with the maize brown-midrib bm1 phenotype,
inducing higher cell wall degradability, lower lignin
content, an incorporation of aldehydes in the lignin
polymer, and no change in the syringyl/guaiacyl (S/G)
ratio (Halpin et al, 1998; Barriére et al, 2004c; Chen
et al, 2012b; Barriere et al, 2013). Maize CAD down-
regulated RNAI plants, which did not presented the
brown-midrib phenotype, nor changes in stem lignin
content, were however shown to be more degrad-
able, with an improved cellulosic bioethanol produc-
tion (Fornalé et al, 2012). Even if similarly no brown-
midrib phenotype was shown, a transposon-tagging
mutation in the ZmCCR1 gene also induced reduced
lignin content and higher cell wall degradability. In
addition, H units were released in lower amounts
from the ZmCCR1 mutant plants compared with the
normal ones, with simultaneously an increase in the
S/G ratio in mutants (Tamasloukht et al, 2011). Final-
ly, other members of the CCR and CAD families could
correspond to genes mainly involved in defense pro-
cesses, which are likely able to partially compensate
the impaired enzymatic activities in CCR1 and CAD2
mutant plants.

Ferulate 5-hydroxylase (F5H) catalyzes the 5-hy-
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droxylation of coniferaldehyde (and to a lesser ex-
tent, coniferyl alcohol) into 5-hydroxyconiferaldehyde
(5-hydroxyconiferyl alcohol, respectively). Two F5H
genes are present in maize genome, F5H1 with a
strong expression in maize stalks and F5H2 mostly
expressed in roots (Guillaumie et al, 2007a; Riboulet
et al, 2009). 5-Hydroxyconiferaldehyde is methylated
into sinapaldehyde by the caffeic acid O-methyltrans-
ferase (COMT), which is the only gene of the maize
monolignol pathway that does not belong in maize
to a small multigene family. The COMT enzyme has
a much greater affinity for the 5-hydroxyconiferyl al-
dehyde than for the alcohol (Li et al, 2000; Parvathi et
al, 2001; Louie et al, 2010), and despite its denomi-
nation, the COMT enzyme has no in vivo activity on
caffeic acid (Davin et al, 2008). The importance of the
maize COMT gene in lignin biosynthesis was previ-
ously established from mutant or transformed plant
investigations, and from association studies. The
brown-midrib bm3 mutation, which occurred in the
COMT gene, first induced a reduced COMT activity
and reduced lignin content (Grand et al, 1985; Vignols
et al, 1995; Guillaumie et al, 2008). Plants with the
bm3 mutation also had greatly improved cell wall de-
gradability, and reduced S/G ratio with a reduction to
40 % of S units released after thioacidolysis with sig-
nificant incorporation of 5-hydroxy-coniferaldehyde
(Kuc and Nelson, 1964; Barriere et al, 2004c). Similar
results were shown in COMT down-regulated plants
(Piguemal et al, 2002; He et al, 2003; Pichon et al,
2006).

Biosyntheses of coniferyl and sinapyl alcohols are
possibly based on two different preferential routes
starting from caffeoyl-CoA, at least in several plant
species (Guo et al, 2001; Parvathi et al, 2001; Lee et al,
2011b). Coniferyl alcohol likely mostly originates from
a synthesis of coniferaldehyde after a methoxylation
of caffeoyl-CoA into feruloyl-CoA. Even if, depend-
ing on the species, a variable part of syringyl alcohol
could also derive from the same pathway, syringyl al-
cohol could be produced from a first CCR-catalyzed
reduction of caffeoyl-CoA into caffeoyl aldehyde, and
then a methoxylation on this last compound. This me-
thoxylation of caffeoyl aldehyde into coniferaldehyde
has been considered to be catalyzed by the caffeic
acid O-methyltransferase (COMT) in several studies
on dicotyledonous plants (Li et al, 1997; Guo et al,
2001; Parvathi et al, 2001; Chen et al, 2006; Do et al,
2007; Lee et al, 2011b; Zhao and Dixon, 2011; Gray
et al, 2012). The route duality and the involvement of
COMT in a methoxylation step other than on 5-hy-
droxyconiferaldehyde have not been established in
grasses. However, since the disruption of the COMT
gene in maize bm3 mutants did not completely pre-
vent the synthesis of syringyl alcohol, an alternative
methoxylation pathway should exist in maize. On
the contrary, in the Arabidopsis AtOMT1 mutant, the
lignin content in S units is reduced to a value close
to zero (Goujon et al, 2003). Because CCoAOMT en-
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zymes have a strict affinity for CoA-esters (Martz et
al, 1998; Meng and Campbell, 1998; Parvathi et al,
2001), they cannot be considered as candidates in-
volved in 5-hydroxy-coniferaldehyde methoxylation.
Conversely, several ZRP4-like OMT are expressed
in lignifying tissue of maize stems (Guillaumie et al,
2007a,b). Consequently, their role is very likely not
limited to methylation of suberin sub-unit precursors
in plant roots as initially described (Held et al, 1993).
At least one ZRP4-like OMT could thus contribute to
methoxylate the C5 position of the phenolic ring dur-
ing monolignol biosynthesis in maize. In agreement
with this hypothesis, the expression of two ZRP4-like
OMT was increased by nearly two fold in bm3 young
and silking plants (Guillaumie et al, 2007a; Guillaumie
et al, 2008).

Genes involved in monolignol transport and
polymerization

After their biosynthesis, the three monolignols are
sequestred into vacuoles as 4-O-glucosides, while
monolignol aglycones are transported across mem-
branes (Lim et al, 2005; Escamilla-Trevino et al, 2006;
Miao and Liu, 2010; Alejandro et al, 2012; Liu, 2012;
Vanholme et al, 2012). Maize genes were searched
for as the orthologs of Arabidopsis uridine-diphos-
phate-glucosyltransferases (UGT), involved in gluco-
sylation of coniferyl and sinapyl alcohols and strongly
expressed in lignifying tissues (Lim et al, 2005; Lanot
et al, 2006). Complementarily, orthologs of pine and
Arabidopsis B-glucosidases (B-Glu45 and B-Glu46),
which encode proteins involved in the release of
monolignol aglycone from its glucosidic form at the
cell wall with narrow specificity towards the three
monolignol glucosides (Dharmawardhana et al, 1995;
Escamilla-Trevino et al, 2006), were considered as
involved in the corresponding maize monolignol me-
tabolism. ABC transporters are involved in the trans-
port of monolignols across membranes (Sanchez-
Fernandez et al, 2001; Samuels et al, 2002; Ehlting
et al, 2005; Miao and Liu, 2010; Kaneda et al, 2011;
Liu, 2012), a fact that was recently supported by the
identification of AtABCG29 as a gene encoding for
an ABC p-coumaryl alcohol transporter in rice (Ale-
jandro et al, 2012). The AtABCG29 protein appeared
with a great specificity to p-coumaryl alcohol, but its
mutation nevertheless induced significant and mostly
unexplained modifications in all lignin constituents.
Other (ABC) monolignol transporters have thus to
be evidenced, such as orthologs of eucalyptus ABC
transporters expressed in xylem tissues (Rengel et al,
2009). In addition, out of the two maize mostly ex-
pressed ABC transporters in plantlets (Guillaumie et
al, 2007a), one was significantly under-expressed in
bm2 plantlets, and could therefore be supposed to
be preferentially involved in coniferyl alcohol trans-
port (Guillaumie et al, 2007b).

Condensation of monolignols into the lignin poly-
mer occurs via combinatorial radical-radical coupling
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reactions (Freudenberg, 1959; Ralph et al, 2008a;
Vanholme et al, 2012), despite the fact that it has also
been considered to occur through an ordered radical
coupling driven by dirigent proteins (Davin and Lewis,
2000; Davin et al, 2008). According to Vanholme et
al (2012), and considering that radical coupling is a
chemically driven process, independent of control by
any protein, "any phenolic molecule entering the cell
wall region and having the proper chemical kinetic,
thermodynamic radical-generation, and cross-cou-
pling propencies can couple into the lignin polymer".
This fact helps explain the diversity of monomers that
has been currently seen in the lignin macromolecules.
In any case, the coupling modes leading to the struc-
ture and geometry of lignin polymers are primarily
influenced by the polysaccharidic matrix in which tis-
sue lignification occurs. This so called "template ef-
fect" is supported by experimental data obtained for
gymnosperm and dicotyledonous angiosperm woods
(Lapierre et al, 1991; Aimi et al, 2005; Lawoko et al,
2005). Such information is not available for grass cell
walls, but a similar situation seems likely.

While class lll peroxidases have long been con-
sidered as the unique class of oxidases involved in
lignin polymerization, EST sequencing and expres-
sion studies based on lignifying tissues, and mu-
tant investigations, have shown that both laccases
and peroxidases are involved in cell wall lignifica-
tion (Boudet, 2000; Nielsen et al, 2001; Boerjan et al,
2003; McCaig et al, 2005; Cai et al, 2006; Sasaki et
al, 2006; Sato and Whetten, 2006; Tokunaga et al,
2009; Fagerstedt et al, 2010; Berthet et al, 2011).
Class lll peroxidases and laccases belong to multi-
gene families, and consequently, redundancy in their
activity has often been suspected. However, the im-
portance of oxidase redundancy is greatly reduced
by the fact that many peroxidases or laccases have
specific spatio-temporal expression patterns. When
considering genes expressed in maize vascular and
lignifying tissues, and orthologs of Arabidopsis genes
expressed in lignifying stems (de Obeso et al, 2003;
Bakalovic et al, 2006; Caparros-Ruiz et al, 2006; Guil-
laumie et al, 2007a; Andersen et al, 2009; Barriére et
al, 2009; Riboulet et al, 2009), only five peroxidase
and fourteen laccase genes were currently con-
sidered in the maize genome. Whether all the latter
genes are effectively involved in constitutive lignifica-
tion, and whether some other members are still un-
identified, especially for peroxidases, is not known.
However, several investigations suggested that only
a few members would be involved in secondary wall
assembly. This fact is more likely a consequence of a
regulated spatio-temporal expression of peroxidase
and laccase genes, rather than a specificity of sev-
eral family members towards monolignols. In addi-
tion, sinapyl alcohol is far more rapidly oxidized in the
presence of p-coumarate, which is then oxidized by
peroxidases and transfers the radical to sinapyl alco-
hol (Boudet, 2000; Hatfield et al, 2008).
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Figure 1 - Physical map of maize genes related to monolignol biosynthesis, transport, and polymerization.

Down-regulation of the tobacco peroxidase TP60
led to plants with lignin reductions of 20 and up to 40-
50% of control plants. In the down-regulated line with
the most robust changes in lignin content through
several generations, plants have thin cell walls and
limited secondary wall thickening with an abnormal
S2 layer (Blee et al, 2003; Kavousi et al, 2010). Simi-
lar results were shown in aspen after deregulation of
the PrxA3a peroxidase (Li et al, 2003b). In addition, a
MITE insertion disrupting the ZmPox3 gene was as-
sociated with higher cell wall degradability in a set
of related maize European flint lines (Guillet-Claude
et al, 2004), whereas ZmPox2 was considered to be
involved to a greater extent than ZmPox3 in maize
vascular vessels and epidermis lignification (de
Obeso et al, 2003). While the lignin content was not
changed, the down-regulation of the poplar Lac3 lac-
case gene induced an important alteration of xylem

fiber cell walls, with an increase in soluble phenolic
compounds (Ranocha et al, 2002). In Arabidopsis,
laccase AtLac4 and AtLac17 double mutants had
lignin content that were 35% lower than in control
plants, with higher saccharification yields, while the
reduction was nearly 13% in single mutants (Berthet
et al, 2011). Over-expression of a cotton laccase in
poplar plants induced an increase in lignin content in
all tested transgenic lines in varying degrees, but as
high as 21.5% (Wang et al, 2008). Observed effects
on lignin content in (double) peroxidase or laccase
mutants or transformants were thus of the same or-
der of magnitude as those observed with monolignol
genes, such as in the maize bm3/COMT mutant, and
even higher than in the maize bm1/CAD mutant.
Considering the different steps involved in mono-
lignol biosynthesis, transport, and polymerization
(Figure 1 and Supplementary Table 4), 74 genes were
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shown in the maize genome. The genes correspond-
ing to the different enzymatic activities are scattered
throughout the whole genome, while conversely clus-
ters of paralogs, which likely correspond to gene du-
plications, were shown for PAL, ZRP4-like OMT, and
laccase genes.

Genes involved in the S-adenosyl-L-methio-
nine cycles

The methylation of lignin precursors by SAM-
dependent O-methyltransferases (S-adenosyl-L-me-
thionine, SAM or AdoMet) consumes large amounts
of methyl groups (Van der Mijnsbrugge et al, 2000).
The formation of SAM from methionine and ATP is
catalyzed by an S-adenosyl-methionine synthetase
(SAMS). SAM-dependent transmethylation reactions
release S-adenosyl-homocysteine (SAH or AdoHcy),
which is a strong competitive inhibititor of COMT and
CCoAOMT enzymes (Ravanel et al, 1998; Kocsis et al,
2003). SAH is thus promptly recycled into homocys-
teine and adenosine by an S-adenosyl-homocysteine
hydrolase (SAHH) while an adenosine kinase (ADK)
mediates the recycling of adenosine into adenosine
monophosphate (Ranocha et al, 2000; Ranocha et al,
2001; Moffatt et al, 2002). The methylenetetrahydro-
folate reductase (MTHFR) catalyzes the conversion
of 5,10-methylenetetrahydrofolate to 5-methyltetra-
hydrofolate (5-methylTHF), a cosubstrate for homo-
cysteine remethylation to methionine (Goyette et al,
1994). The methionine synthase (MS) then catalyzes
the synthesis of methionine from homocysteine with
the supply of the methyl radical from 5-methylTHF
conversion into THF. The SAM pool is also regulat-
ed by the S-methylmethionine (SMM) "futile" cycle
(Ranocha et al, 2001), with the synthesis of SMM by
a methyl transfer from SAM to methionine catalyzed
by a S-adenosylmethionine:methionine S-methyl-
transferase (MMT) and the release of SAH. SMM is
reconverted to methionine by transferring a methyl
group to homocysteine, in a reaction catalyzed by
a homocysteine S-methyltransferase (HMT). The set
of inter-dependent methionine-related cycles might
therefore significantly impact the efficiency of methyl-
ation reactions in the lignin pathway and correlatively
the quantity of lignins, the S/G ratio, and the ferulate
contents. In lignifying tissues, PAL, CCoAOMT, and
COMT expression profiles were thus highly correlat-
ed with SAMS and HMT profiles in maize or eucalyp-
tus (Vincent et al, 2003; Kirst et al, 2004; Guillaumie et
al, 2007a). Up until recently, no data had shown that
methyl group availability could be a limiting factor in
monolignol biosynthesis. However, the maize bm2
mutation, giving plants with lower lignin content and
lower G content in lignins (Chabbert et al, 1994; Bar-
riere et al, 2004c), was shown to occur in a MTHFR
gene (Tang, 2011). Because the methionine pathway
is located upstream to coniferyl and syringyl alcohol
biosynthesis, a similar effect on G and S lignin unit
of the MTHFR mutation was nevertheless expected.
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Considering the the S-adenosyl-L-methionine cycles,
16 genes were shown in the maize genome (Supple-
mentary Table 5). Based on physical positions, there
does not appear to be any tendency to clustering of
methyltransferase genes and S-adenosyl-L-methio-
nine cycle genes.

Genes involved in p-hydroxycinnamate acyla-
tion and transfer onto cell wall components

The acylation of S units in grass lignin occurs at
the monolignol level and before the transfer of S-
pCA in the cell wall space (Ralph et al, 1994; Lu and
Ralph, 1999; Grabber and Lu, 2007; Martinez et al,
2008). This process of p-coumaroylation is there-
fore dependent upon the production of the activated
p-coumaroyl-CoA (pCA-CoA) which is a key-com-
pound in the phenylpropanoid pathway, and upon
specific transferase(s) acylating sinapyl alcohol with
an activated p-coumaric acid. The corresponding
acyltransferases(s) was shown to use an activated
acid (p-coumaroyl-CoA) to form the corresponding
sinapyl p-coumarate (Hatfield et al, 2009), and a can-
didate enzyme with higher affinity towards sinapyl
alcohol than towards coniferyl alcohol was also de-
scribed (Martinez et al, 2008; Hatfield et al, 2009). The
rice gene Os01g18744 (OsPMT, Oryza sativa p-cou-
marate monolignol transferase), which belongs to the
BAHD acyltransferase family, was recently shown to
encode an enzyme catalyzing the acylation of mono-
lignols via the activated p-coumaroyl-CoA (Withers et
al, 2012). Moreover, this gene was specific to grass
species, and co-expressed in rice with genes of the
monolignol pathway (Mitchell et al, 2007). A set of
OsPMT orthologs were shown in maize, with two
close orthologs and several other orthologs that were
also previously found as orthologs of genes putative-
ly involved in arabinoxylan feruloylation.

Results obtained with the maize bm3 mutant
strongly suggest that FA is not biosynthesized by
a COMT-catalyzed methylation of a caffeic precur-
sor. The disruption of the COMT gene does not af-
fect the FA content of mutant plants (Barriere et al,
2004c), even if the lower lignin content in the bm3
mutant may increase the yield of alkali-releasable
FA (Grabber et al, 2000). As was shown for S unit
acylation by the p-coumarate, the formation of feru-
loylated compounds does not occur at the free acid
level, but involve conjugates of the ferulic acid which
are likely CoA-esters (Fry et al, 2000). Corroborating
this fact, a putative feruloyl-CoA-arabinoxylan-tri-
saccharide O-hydroxycinnamoyl transferase activity
(Yoshida-Shimokawa et al, 2001) has been found in
suspension-cultured rice cells fed feruloyl-CoA and
arabinoxylan-trisaccharide (AXX), allowing the forma-
tion of feruloyl arabinoxylan-trisaccharide (FAXX). A
reaction between feruloyl-CoA and UDP-arabinose
was also considered, giving a FA-Ara-UDP interme-
diate which could be transferred to the arabinoxylan
chain in a reaction catalyzed by a feruloyl-arabinose-
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UDP transferase (Buanafina, 2009). Finally, another
even less probable hypothesis for ferulate biosynthe-
sis in grasses has been considered from investiga-
tions in the Arabidopsis REF1 mutant plants, which
have a reduced content in soluble sinapate esters.
This mutant is affected in a sinapaldehyde dehydro-
genase gene and the REF1 protein exhibited in vitro
both sinapaldehyde and coniferaldehyde dehydroge-
nase activities (Nair et al, 2004). The formation of free
sinapic and probably ferulic acids in Arabidopsis is
thus catalyzed via the oxidation of the corresponding
cinnamaldehydes. In maize, three mitochondrial and
two cytosolic ALDH (ALDH2C and 2D) orthologs of
the REF1 gene have been described (Skibbe et al,
2002; Nair et al, 2004). However, their physiological
role has not yet been determined. It is indeed not
yet known if such an ALDH pathway is functional in
maize and grasses for the cell wall linked ferulate me-
tabolism.

Genes involved in arabinoxylan feruloylation were
thus tentatively identified as acyltransferase (AcT)
encoding genes specifically expressed in grasses in
contrast to dicotyledons in which this particular func-
tion is supposed to be missing (Mitchell et al, 2007).
One of the most differentially expressed groups of
grass genes included members of the Pfam family
PF02458 encoding CoA-dependent AcT including
hydroxycinnamyl transferases. A study of gene de-
regulation in rice (Piston et al, 2010) supported the
involvement of these putative feruloyl-transferases.
Rice plants with an individually reduced expression
of four members of this family had a reduced con-
tent of ester-linked ferulate in leaves and/or stems.
As previously cited, maize orthologs of the rice
PF02458 genes putatively involved in arabinoxylan
feruloylation were for some of them the same as
those found as orthologs of the rice gene involved
in p-coumaroylation of S units. Acyltransferases en-
zymes share several conserved domains, a fact that
could partly explain the close paralogs found in the
maize genomes (D'Auria, 2006). Only 14 genes were
shown in the maize genome (Supplementary Table 6)
to be involved in p-hydroxycinnamate acylation and
transfer onto cell wall components. This list is prob-
ably not exhaustive, and new genes or families are
yet to be discovered.

Based on investigations in a transposon-tagging
progeny of 12,000 plants, the sfe mutant (M04-21)
was shown to have a low ferulate-ether phenotype
in both leaves, sheathes, and stems, together with a
lower lignin content (Jung and Philips, 2010). More-
over, dairy cows fed M04-21 sfe silage, which had
similar lignin content but a 30% lower etherFA con-
tent than the control line, had a greater intake (+1.5
kg day™) and a higher milk yield (+2.3 kg day"' FCM
3.5%) than cows fed the control W23 silage (Jung et
al, 2011). The gene underlying the sfe mutation is not
yet known, but its discovery would be one of the best
ways to track specific mechanisms involved in lignin
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and feruloylated arabinoxylan cross-linking. In ad-
dition, breeding for divergent ester-linked diferulate
(diFA) concentration in maize stalk pith tissues in-
duced, after two cycles of divergent selection, a 16%
difference in diFA content between the two selected
populations, with significant effect on rumen cell
wall degradability (Barros-Rios et al, 2012). This sig-
nificant diFA variation after breeding suggested that
diFA deposition in maize pith parenchyma cell walls
is a highly heritable trait. However, the correspond-
ing involved genes are still unknown, all the more so
given that divergent selection affected esterified and
etherified FA contents differently, supporting the hy-
pothesis that the metabolisms of these cell wall com-
ponents are separately regulated (Barros-Rios et al,
2012).

Finally, reducing arabinosyl transferase activities
would seem to be a relevant strategy for reducing
ferulate cross-linkages in the walls. The ferulic acid
is esterified to the a-1,3 linked arabinofuranose. Rice
xax1 mutant plants are deficient in feruloylated ara-
binosyl residues on xylan chains. The xax7 mutant
plants exhibit an increased extractability of xylan
and increased saccharification, probably as a conse-
quence of a lower degree of diferulic cross-linkages
(Chiniquy et al, 2012). Other genes compromise the
grafting of arabinose on xylan chains, and conse-
quently the ferulate cross-linkages, including UDP-
arabinopyranose mutase (Konishi et al, 2011), may be
considered as targets for increased saccharification
in biofuel generation processes.

Genes involved in regulation of phenylpro-
panoid biosynthesis and deposition

Genes involved in the regulation of monolignol
biosynthesis have been described in different spe-
cies, but little is currently known for maize or grasses.
The transfer of data and knowledge related to tis-
sue patterning and lignification from dicotyledons or
gymnosperms to grasses is difficult due to the vas-
cular specific traits in grasses. In contrast to dicoty-
ledonous plants, the vascular system of non-woody
monocotyledons is characterized by the absence of
bifacial cambium and secondary growth. Monocoty-
ledon lignification proceeds from an intercalary meri-
stem in each internode, with vascular bundles scat-
tered, penetrating radially and present in medulla and
cortex (Terashima and Fukushima, 1993; Tomlinson,
1995). However, the emergence and evolution of lig-
nified tracheids and vascular tissues was based for
all vascular plants on the expression of a preexist-
ing poly-phenolic pathway (Boyce et al, 2003), with
lignin targeted deposition in different cell types. In
addition, many results obtained in lignification genet-
ics and genomics illustrated a large commonality in
genes involved in cell wall carbohydrate and phenolic
biosynthesis in all plant species. Orthologs of factors
regulating lignin-related gene expression in woody
species are therefore likely candidate genes for reg-
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ulation of maize lignin biosynthesis and deposition,
even if the targets have possibly changed during
plant evolution. Moreover, with the possible selec-
tion of grass specific genes, as has been shown for
genes involved in arabinoxylan biosynthesis, specific
grass transcription factors might have emerged dur-
ing plant speciation and evolution.

MYB transcription factors

The regulation of phenylpropanoid gene biosyn-
thesis was the first role identified for a plant R2R3-
MYB transcription factor (Paz-Ares et al, 1987), which
was first illustrated by the heavily reduced lignin con-
tent in mature parts of tobacco plants over-express-
ing an Antirrhinum MYB factor (Tamagone et al, 1998).
R2R3-MYB genes recognize AC cis-regulating ele-
ments which are present in promoters of many phen-
ylpropanoid genes (Sablowski et al, 1994; Peter and
Neale, 2004), even if other interaction mechanisms
also exist (Uzal et al, 2008). Other pathways are also
regulated by R2R3-MYB, and based on aspen data,
only 12% of the R2R3-MYB encoding genes showed
the highest level of transcript abundance in differenti-
ating xylem (Wilkins et al, 2009).

Only ZmMYB31, ZmMYB42, and ZmMYB46 have
been proven to be related to the secondary wall for-
mation in maize. ZmMYB31 and ZmMYB42 both
have a repressive effect on the expression of several
genes of the lignin pathway (Fornalé et al, 2006; Son-
bol et al, 2009; Fornalé et al, 2010; Gray et al, 2012),
while ZmMYB46 has an activator effect on secondary
wall biosynthetic genes (Zhong et al, 2011). Similarly,
PvMYB4, orthologous to ZmMYB42, was shown to
have a repressive effect on lignin pathway genes, re-
sulting in reduced lignin and pCA content in Panicum
virgatum plants over-expressing this gene (Shen et al,
2010). Other MYB factors putatively involved in the
regulation of maize lignification have been searched
for as orthologs of lignin-related R2R3 MYB genes
described in eucalyptus [EQMYBH1, (Legay et al, 2007;
Legay et al, 2010), EQMYB2 (Goicoechea et al, 2005)],
poplar [PtMYB4, PttMYB21 or PtrMYBO021 (Patzlaff et
al, 2003; Karpinska et al, 2004; Wilkins et al, 2009)],
pine [PtMYB1, PtMYB8 (Bomal et al, 2008)], barley
[MYB hv5 and hv33, (Wissenbach et al, 1993)], and
Arabidopsis [AtMYB46, AtMYB83, (Zhong et al, 2007;
Zhong and Ye, 2012) AtMYB4, AtMYB7, AtMYB32
(Zhong and Ye, 2009; Zhou et al, 2009; Zhong and
Ye, 2010; Zhong et al, 2010; Zhong and Ye, 2012),
AtMYB20, AtMYB58, AtMYB63, AtMYB85 (Zhong et
al, 2007; Zhou et al, 2009; Ohman et al, 2013), At-
MYB52, AtMYB54, AtMYB69 (Zhong et al, 2008), At-
MYB61 (Newman et al, 2004), AtMYB75 (Bhargava et
al, 2010), and AtMYB103 (Ohman et al, 2013)]. In ad-
dition, a large overview of the R2R3-MYB gene family
in maize has been recently proposed, with a compre-
hensive classification of all family members, including
subgroups involved in regulation of lignified cell wall
biosynthesis and deposition (Du et al, 2012). Maize
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MYB orthologous to AtMYB4, which was shown to
be a negative regulator of lignin gene expression,
were gathered in the G4 subgroup "phenylpropanoid
pathway" (Du et al, 2012). This group included the
two ZmMYB31 (GRMZM2G050305) and ZmMYB42
(GRMZM2G419239) genes, and members of this
group are also orthologs of EQMYB1 and hv5 MYB.
ZmMYB31 was shown with a stronger repressing ef-
fect on COMT expression than ZmMYB42, but Zm-
MYB42 also negatively regulated the expression of
several genes of the lignin pathway. Moreover, the
over-expression of the ZmMYB42 gene in Arabidop-
sis plants generated a lignin polymer with a decreased
S/G ratio due to a lower content in S units (Fornalé et
al, 2006; Sonbol et al, 2009). Orthologs of AtMYB58
and AtMYB63, which are known for their activating
role in lignin biosynthesis (Zhou et al, 2009), were
gathered in the G3 subgroup "lignin biosynthesis",
and in the G2 subgroup with genes considered to
be involved in "defense" processes. Orthologs of At-
MYBS85, which is involved in cell wall thickening and
lignin deposition (Zhong et al, 2008), were classified
in the G8 subgroup "lignin deposition". Similarly, or-
thologs of AtMYB52, AtMYB54 and AtMYB69, which
also have a role in cell wall thickening and lignin bio-
synthesis in Arabidopsis (Zhong et al, 2008), were
gathered in the G21 subgroup. EQMYB2, AtMYB46,
AtMYB83, which were shown to be transcriptional
activators of lignification, and the only ZmMYB146
maize ortholog were classified by Du et al (2012) in
the G31 "metabolism" subgroup, together with Pt-
MYB4 [ZmMYB146 (or GRMZM2G052606, bin 10.03)
is also named ZmMYB46 by Zhong et al (2011)]. The
latter subgroup of AtMYB46/EgMYB2 genes was un-
expectedly not related to any lignification process by
Du et al (2012), despite their well known effect as an
activator of seconday wall biosynthesis. In Arabidop-
sis, the two AtMYB46 and AtMYBS83 genes, together
with their NAC regulators and their direct targets,
were indeed shown to be master genes of the sec-
ondary wall assembly. This set of genes regulates
an array of downstream genes and thereby activates
the secondary wall lignin and carbohydrate biosyn-
thetic programs, in a multileveled feed-forward loop
regulatory structure (Zhong and Ye, 2012). Other
ZmMYB were considered as putative orthologs of
AtMYBE61, a gene that produced ectopic lignification
when overexpressed in Arabidopsis plants (Newman
et al, 2004). The latter were classified in the G13 "me-
tabolism" subgroup (Du et al, 2012), which included
the hv33 MYB gene expressed in lignifying tissue of
barley (Wissenbach et al, 1993). In addition, the Zm-
MYB130 gene was the only maize MYB belonging
to the G28 subgroup "phenylpropanoid pathway",
and the closest Arabidopsis ortholog of ZmMYB130
is AtMYBS5, a gene involved in anthocyanin metabo-
lism. The AtMYB75 gene, also assigned to the G6
"anthocyanin biosynthesis" subgroup by Du et al
(2012), was shown to have a role in stem lignifica-
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Figure 2 - Physical map of maize MYB genes putatively involved in maize secondary wall assembly [ZmMYB numbers and

groups are given according to Du et al (2012)].

tion (Bhargava et al, 2010). It was thus considered to
be "the first transcription factor reported so far that
functions as a repressor of the entire secondary cell
wall program" in Arabidopsis (Zhao and Dixon, 2011).
In fact, while AtMYB75 was shown to be a positive
regulator of anthocyanin accumulation, its physical
interaction with KNAT7 was shown to increase the
repressive effect of KNAT7 on secondary wall depo-
sition (Bhargava et al, 2013). It is still unclear whether
an ortholog of AtMYB75 exists or not in maize, but
this group could be absent in grass genomes (Du et
al, 2012). On the contrary, AtIMYB103 was shown to
positively and specifically regulate F5H expression
in the lignin pathway, even if other roles in the cell
wall assembly could not be ruled out (Ohman et al,
2013). The only maize ortholog of AtMYB103, located
in bin 10.03, is also the only maize one belonging to
the G30 group (Du et al, 2012), with genes involved in

"cell wall thickening". Unexpectedly, most Arabidop-
sis MYB genes described as involved in the regula-
tion of secondary wall assembly are activator factors,
while most of those currently described in maize are
repressor factors. Finally, 45 MYB transcription fac-
tors putatively involved in the secondary wall assem-
bly were thus found in the maize genome (Figure 2,
Supplementary Table 7). This list is possibly incom-
plete because most of them were highlighted as or-
thologs of non-grass plant MYB.

NAC transcription factors

Lignin and cell wall genes are regulated upstream
the MYB transcription factor level. The first demon-
strations that NAC transcription factors were involved
in secondary wall assembly were likely the roles of
NST1 and NST2 (NAC SECONDARY WALL THICK-
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ENING PROMOTING FACTORS) in secondary wall
thickening (Mitsuda et al, 2005) and the roles of VND6
and VND7 (VASCULAR-RELATED NAC-DOMAIN) in
vessel xylem formation (Kubo et al, 2005). Over-ex-
pression of NST1, NST2 and SND1 thus induced ec-
topic lignified secondary cell wall thickenings in vari-
ous Arabidopsis tissues (Mitsuda et al, 2005; Ko et al,
2007; Mitsuda et al, 2007; Zhong et al, 2006). Later,
different Arabidopsis NAC proteins were shown to be
master actors regulating the expression of several
transcription factors (including MYB and other NAC
genes) and/or genes involved in secondary cell wall
biosynthesis (Zhong and Ye, 2007; Yamaguchi et al,
2008; Zhong et al, 2008; Zhong and Ye, 2009; Zhou
et al, 2009; Zhong et al, 2010). NAC factors thus in-
clude NST 1-3 (with NST3 = SND1) which are specific
to fibers, and the VND 1-7 which are specific to vas-
cular vessels (Grant et al, 2010; Grima-Pettenati et
al, 2012). Both NST and VND factors belong to the
same NAC subfamily (Yamaguchi, 2010) and func-
tion as transcriptional activators. In addition, VNI2
(VND-INTERACTING2, and to a lesser extent VNI1)
is a transcriptional repressor of vessel-specific genes
regulated by VND7 (Yamaguchi et al, 2010). Interac-
tions mostly occur between VNI2 and VND7, but also
exist to a lesser extent with other VND proteins and
possibly other NAC factors. In maize, four orthologs
of Arabidopsis master NAC (ZmSWN2, 3, 6, and 7)
were investigated and additional analysis has dem-
onstrated that the latter ZmSWNs were functional
orthologs of SND1 capable of activating the second-
ary wall biosynthetic program (Zhong et al, 2011). In
addition, ZmSWN7 corresponds in fact to two closely
duplicated genes in positions 28.04 and 28.14 Mbp
on chromosome 9. Based on this set of data, 38 sec-
ondary wall NAC genes were shown in the maize,
while only 11 were shown by Yao et al (2013), with the
same limits as for MYB genes due to the search for
non-grass plant orthologs (Supplementary Table 7).

Partner and target genes of MYB or NAC tran-
scription factors

The class Il KNAT7 Arabidopsis gene, first de-
scribed as IRX11 (Brown et al, 2005), is one of the
direct targets of SND1, VND6 and AtMYB46 (Zhong
et al, 2008; Ko et al, 2009). The KNAT7 gene was later
shown to be a transcriptional repressor of second-
ary cell wall biosynthesis, in interaction with OFP1
and OFP4 (OVATE FAMILY PROTEIN 1 and 4, Li et
al, 2011b), and AtMYB75 (Li et al, 2012; Barghava et
al, 2013). OFP4 loss-of-function mutants also have
an irregular xylem phenotype and thinner interfas-
cicular fiber cell walls (Li et al, 2011b). Arabidopsis
KNAT7 was considered to be involved in "a nega-
tive feedback loop within these regulatory networks
governing secondary cell wall biosynthesis, working
antagonistically to NAC and MYB positive regulators”
(Li et al, 2012). In poplar, the class-I KNOX homeo-
box gene, ARBORKNOX2 (ARK2), which is ortholog
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to BREVIPEDICELLUS (or KNAT1) in Arabidopsis, is
involved in terminal cell differentiation during second-
ary growth and subsequent lignin and cellulose con-
tents (Du et al, 2009). Protein-protein interactions in
the phenylpropanoid metabolism also involve at least
basic helix-loop-helix (bHLH), and WD40 proteins
(Grima-Pettenati et al, 2012). bHLH transcription fac-
tors belong to a protein family for which many dif-
ferent functions have first been identified in animals,
including the control of cell proliferation and develop-
ment of specific cell lineages. In the Arabidopsis and
rice genomes, 133 and 167 bHLH genes have been
shown (Heim et al, 2003; Li et al, 2006), respectively,
likely indicating that more than 200 are present in the
maize genome. Based on bioanalysis investigations,
the rice bHLH proteins can potentially participate in a
variety of combinatorial interactions, endowing them
with the capacity to regulate a multitude of transcrip-
tional programs related to plant cell and tissue devel-
opment as well as plant metabolism (Li et al, 2006),
with likely only a few members involved in lignified tis-
sue assembly. WD40 proteins are regulatory proteins
which contain a domain of nearly 40 amino acids often
terminating with tryptophan (W) and aspartic acid (D)
These specific traits give them their "WD40" denomi-
nation (Ramsay and Glover, 2005). Protein complex-
es composed of MYB and bHLH transcription factors
associated with WD40 proteins have been shown to
initiate multiple cellular differentiation pathways in a
range of plants (Ramsay and Glover, 2005). Coher-
ent models of the network of interactions that lead to
diverse cell fates through the activity of this protein
complex were considered as one basis of flexibility
in plant morphology, and consequently to have likely
played a major role in angiosperm evolution and suc-
cess. The complex appears to have arisen in the land
plant lineage, although its component parts are con-
siderably more ancient (Ramsay and Glover, 2005).
It was thus hypothesized that such complexes are
also involved in controlling of the regulation of lignin-
related R2R3-MYB transcription factors, all the more
so given that the role of such complexes has been
shown for regulation of anthocyan biosynthesis (Zhao
et al, 2008; Brueggemann et al, 2010), including in
maize (Cone et al, 1993; Grotewold et al, 2000). As
a whole, 28 partners and targets of MYB genes were
shown in the maize genome (Supplementary Table 7).

Zinc finger regulation factors putatively in-
volved in lignified tissue assembly

Zinc finger proteins constitute one of the largest
families of transcription factor regulatory proteins.
They are involved in many regulations during plant
development, including lignified tissue assembly.
Zinc-finger C2H2 genes were the most frequently rep-
resented transcription factors in eucalyptus second-
ary xylem libraries (Rengel et al, 2009). The AtC3H14
zinc finger protein has been shown to activate all of
the secondary wall phenolics and carbohydrate re-
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lated genes tested. Both SND1 and AtMYB46 pro-
teins were shown to bind to the AtC3H14 promoter,
and AtC3H14 might function as master regulator of
secondary wall biosynthesis, located downstream of
AtMYB46 (Ko et al, 2009; Kim et al, 2012). Moreover,
an AtC3H14 gene was shown to be a probable can-
didate gene underlying cell wall degradability QTLs
in the BurO x ColO progeny (Chavigneau et al, 2012).
In addition, DOF type (DNA-binding with one finger)
domain proteins, which are plant-specific zinc finger
transcription factors involved as transcriptional acti-
vators or repressors in diverse plant growth and de-
velopment processes (Yanagisawa, 2004; Kushwaha
et al, 2011), are also involved in lignified tissue as-
sembly. The high cambial activity of the HCA2 Arabi-
dopsis mutant resulted from an elevated expression
of a DOF transcription factor (AtDOF34) preferentially
expressed in the cambium, phloem, and interfas-
cicular parenchyma cells of stems (Guo et al, 2009).
Ectopic lignification was also related to variation in
DOF gene expression in pom1, eli1 (ectopic lignifica-
tion 1) and det3 (de-etiolated 3) Arabidopsis mutants,
in addition to expression variation of MYB genes
(Rogers et al, 2005). As DOF type zinc finger, C3HC4
type RING zinc finger proteins also have important
roles during plant growth and tissue assembly (Ma
et al, 2009). Finally, LIM zinc finger proteins can
also be involved in the regulation of plant lignifica-
tion, as shown with the tobacco NtLIM1 acting as a
positive regulator of the lignin pathway (Kawaoka and
Ebinuma, 2001). LIM proteins are characterized by
zinc-binding domains that ligate two zinc ions. Un-
like the classical zinc fingers, these domains do not
bind DNA, but mediate interactions with other pro-
teins (Matthews et al, 2009). WRKY zinc finger pro-
teins have highly conserved WRKYGQK amino acid
sequences in their N-terminal part, followed by the
C2H2 or C2HC zinc-finger motifs. WRKY proteins are
involved in diverse physiological and developmen-
tal processes, especially including defense against
biotic stresses (Wei et al, 2012). However, their role
in cell wall constitutive lignification has not yet been
established (Wu et al, 2005; Guillaumie et al, 2010;
Rushton et al, 2010; Tripathi et al, 2012). Nonethe-
less, the AtWRKY12 (At2g44745) gene was highly ex-
pressed in lignifying stems (http://genecat.mpg.de/
database), and its mutation induced secondary wall
formation of pith cell (Wang et al, 2010). Similarly, the
grapevine transcription factor WRKY2 was shown to
be specifically expressed in cells undergoing ligni-
fication in young grapevine stems (Guillaumie et al,
2010). According to the Wei et al (2012) classification
of maize WRKY genes, orthologs of VWWRKY2 and
AtWRKY12 belonged to subgroups | and llc, respec-
tively. In addition, the use of artificial zinc finger chi-
meras, containing either an activation or a repression
domain towards the Arabidopsis At4CL1 promoter
region, resulted in a nearly 30% increase in lignin
content with an ectopic lignin distribution, or a nearly
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40% decrease in lignin content with a decrease in the
S/G ratio, respectively (Sanchez et al, 2006).

Other genes and regulation factors putatively
involved in secondary wall assembly

The Arabidopsis COV1 (continuous vascular ring)
gene encodes an integral membrane protein of un-
known function which is supposed to be involved in
a mechanism that negatively regulates the differen-
tiation of stem vascular tissue by a mechanism in-
dependent of auxin (Parker et al, 2003). In addition
to the firstly described COV71 gene (At2g20120), two
COV1-like paralogs were later identified as the LCV2
and LCV3 genes [Like-COV-2 (At1g43130) and Like-
COV-3 (At2g18460), TAIR database (http://arabidop-
sis.org/)]. Ten orthologous genes were found in the
maize genome, including four, five, and one ortholog
for COV1, LCV2, and LCV3, respectively. Colocaliza-
tions of cell wall degradability QTLs were shown with
seven COV-like genes (out of nine), the only maize
ortholog of COV LCV3 being one of the non-colocal-
izing genes (unpublished data). In addition, one of the
LCV2 maize orthologs, located in bin 8.03, was 3.0
times over-expressed in bm3 ear lignifying internodes
(Guillaumie et al, 2008), thus possibly illustrating an
unknown form of inhibition in lignified tissue forma-
tion. The two latter facts likely corroborated the in-
volvement of COV-like genes in maize and grass cell
wall assembly.

Members of a small class Il homeodomain-
leucine zipper family, including AtHB8, AtHB9
(PHAVOLUTA), AtHB14 (PHABULOSA), AtHB15 (CO-
RONA), and IFL1 (REVOLUTA), are expressed in vas-
cular tissues and they have been considered to play
regulatory roles in vascular differentiation (Talbert
et al, 1995; Ratcliffe et al, 2000; Baima et al, 2001;
McConnell et al, 2001; Green et al, 2005). The IFL1
Arabidopsis gene has two maize orthologs, the mu-
tants of which have rolled leaf phenotypes (RLD7 and
RLD?2). The maize RLD1 gene is regulated by the Zm-
miR166 MiRNA (Juarez et al, 2004). The expression
of the aspen PtaHB1 gene, which is also orthologous
to IFL1, is also inversely correlated with the level of
miR166 miRNA (Ko et al, 2006). In addition, inter-
actions between HDZIP Il and KANADI gene family
members were shown to be involved in the estab-
lishment of the spatial arrangement of phloem, cam-
bium and xylem. It was considered that HDZIP Ill and
KANADI transcription factors control cambium activ-
ity, with KANADI proteins acting on auxin transport,
and HDZIP Il proteins promoting axial cell elongation
and xylem differentiation (llegems et al, 2010). Cor-
roborating this assertion, the down-regulation of the
poplar class Ill HD-ZIP gene PtrHB7 led to plants dis-
playing significant changes in vascular tissues with a
reduction in xylem and an increase in phloem. On the
contrary, PtrHB7 over-expression enhanced differen-
tiation of cambial cells toward xylem cells and inhibit-
ed phloem differentiation (Zhu et al, 2013). Transcrip-
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tional analysis revealed that genes regulating xylem
and phloem differentiations were correspondingly
up- or down-regulated (Zhu et al, 2013). The PtrHB7
gene has six close orthologs in maize, including the
two RLD1 and RLD2 genes. In addition, interactions
between NAC and zinc finger homeodomain proteins
have been reported (Tran et al, 2006).

The GRAS SCARECROW and SCARECROW-like
proteins belong to a plant-specific transcription fac-
tor family which contains basic leucine zipper regions
and are involved in complex regulatory pathways
regulating tissue patterning and differentiation (Di-
Laurenzio et al, 1996; Lee et al, 2008). SCARECROW
proteins are thus involved in bidirectional cell sig-
naling mediated by miRNA165/166. These proteins
interfere with the transcription factor SHORT ROOT
(SHR) equally expressed in stem and root, and HDZIP
Il proteins, towards the control of xylem patterning
(Carlsbecker et al, 2010). These genes could be con-
sidered as candidates inducing cell wall degradabil-
ity variation even if they are involved upstream in the
pathway.

ROP family of Rho-like GTPases are important
signalling proteins during plant growth and tissue dif-
ferentiation, with very little data related to their role
in xylogenesis. A member of the plant ROP family
(EgROP1) was shown to be preferentially expressed
in the cambial zone and differentiating xylem of eu-
calyptus (Rengel et al, 2009). Its over-expression in
Arabidopsis altered vessel formation and fibre growth
in secondary xylem, with changes in secondary cell
wall thickness, lignin and xylan composition (Foucart
et al, 2009). ROP/RAC/RAB genes encode geranyl-
geranylated GTP-binding proteins (GTPases) in-
volved in the auxin proteolysis pathway. The latter are
thought to provide a universal mechanism in the con-
trol of extracellular signal transmission to intracellular
metabolic pathways related to growth, differentiation,
development and defense responses (Gu et al, 2004;
Nibau et al, 2006). Several of them are involved in au-
tophagy and xylem development (Kwon et al, 2010).
Consequently, the latter could be considered as pu-
tative candidates.

Candidate genes were also considered in the ERF/
AP2 (ethylene responsive factor/APETALA2) SHINE
family. After over-expression investigations in rice, an
ERF/AP2 gene was considered as an upstream tran-
scriptional regulator of both master and secondary
target genes involved in the biosynthesis of cell wall
phenolic and carbohydrate components. This ERF/
AP2 transcription factor was supposed to directly
bind promoter regions of NAC and MYB genes in-
volved in regulation of cell wall assembly. Rice plants
over-expressing Arabidopsis SHINE2 gene thus had
lower lignin and higher cellulose and hemicellulose
contents, without changes in plant strength or overall
performances (Ambavaram et al, 2011).

The Arabidopsis SHP1 (SHATTERPROOF MADS-
box) gene, which has been shown to specify with
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SHP2 the lignified valve margin of mature siliques
(Liliegren et al, 2000), likely has other roles in tis-
sue lignification as it is also expressed in stems and
down-regulated at the maturing stage (Ko and Han,
2004). While the roles of their maize orthologs are
not known, the maize ZmZAG5 gene was under-
expressed to nearly the same level as the disrupted
COMT gene in bm2 plantlets, while it was 3.5 times
over-expressed in the ear internode of bm3 silk-
ing plants (Guillaumie et al, 2007b; Guillaumie et al,
2008).

The maize a-expansin 5 (EXPA5) gene also prob-
ably has a function of interest in cell wall metabo-
lism. Most expansins are involved in the disruption
of hydrogen bonds between cellulose microfibrils
and cross-linking hemicelluloses in the wall, restoring
the long-term extension to cell walls (Li et al, 2003c).
However, roles of expansins that do not involve wall
expansion have already been shown. Expansins
have been associated with the growth of protoxy-
lem elements in Zinnia stems (Im et al, 2000). Simi-
larly, several expansins appeared to be expressed
during the differentiation of the tracheary elements,
and the ZmEXPAS gene was expressed in leaf region
where secondary cell wall deposition occurred (Mil-
ioni et al, 2001; Muller et al, 2007). The latter facts
suggest their possible involvement in secondary
wall formation. While ten genes are annotated o-
expansin in the maize sequence database and nine
of them have numerous paralogs, the EXPA5 gene
(GRMZM2G361064) appears different from the oth-
ers as it is the only one without any paralogs. More-
over, the EXPA5 gene is located under a major cell
wall QTL in bin 6.06 (Courtial et al, 2013) and it was at
least 20 times more expressed in four RILs with high
cell wall degradability than in the parental line with
low cell wall degradability (Courtial et al, 2012).

The fasciclin-like arabinogalactan (FLA) proteins
are characterized by a juxtaposition of glycosylated
arabinogalactan-protein (AGP) domains and one or
two fasciclin (FAS) putative cell-adhesion domains.
Members of this gene family are implicated in many
developmental roles, even if their functions remain
largely undefined. However, among the 21 FLA Ara-
bidopsis genes, the two AtFLA11 (or IRX13) and AtF-
LA12 genes were shown to be involved in secondary
wall formation (Persson et al, 2005; MacMillan et al,
2010), with high transcript abundance in stem cells
undergoing secondary-wall deposition. In addition,
(double) mutant plants had altered stem biomechan-
ics, altered cell wall architecture and composition,
lower cellulose contents, and higher lignin contents.
Other results obtained in their orthologs in poplar (La-
farguette et al, 2004), Zinnia (Dahiya et al, 2006), and
eucalyptus (Qiu et al, 2008) strengthened the involve-
ment of AtFLA11/12-like genes in secondary wall for-
mation. In addition, another FLA gene, AtFLA4, was
shown to be required for normal cell expansion, and
the mutant Salt Overly Sensitive5 (SOS5) have thinner
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cell walls (Shi et al, 2003).

Finally, Arabidopsis MAP70 microtubule-associ-
ated proteins were shown to be essential for defining
where secondary cell wall polymers were positioned
and for determining the overall pattern of xylem ves-
sel secondary cell walls (Pesquet et al, 2010; Pesquet
et al, 2011).

This set of miscellaneous genes and regulation
factors putatively involved in secondary wall as-
sembly included 87 genes (Supplementary Table
8), which likely are of varying importance in cell wall
assembly, and correlatively in cell wall degradability
variation. SHATTERPROOF, HDZIP and COV genes
can be considered of great importance in lignified tis-
sue patterning, and thus could be relevant breeding
targets to drive lignification in areas where this trait
is essential for plant standability and disease or pest
tolerance.

Questioning the role of miRNA in cell wall and
lignified tissue biosynthesis

The role of micro-RNA in regulation of plant lig-
nified tissue assembly is little documented. Only a
few miRNA have been shown to be involved or are
thought to be involved in secondary cell wall forma-
tion. The miR166 and 165 families are well known
for this developmental processus. The two miR165
and miR166 have been shown to target and regulate
the transcription HD-ZIP Ill genes, including those
involved in vascular tissue differentiation (Juarez et
al, 2004; Kim et al, 2005; Ko et al, 2006). The maize
ZmmiR166 miRNA thus accumulates in phloem and
regulates the maize rolled-leaf1 gene (RLD1), which
encodes an HD-ZIP Il transcription factor. The Ara-
bidopsis ortholog of RLD1 is the IFL1/REVOLUTA
gene, which is similarily involved in the differen-
tiation of interfascicular fibers and secondary xylem
(Ratcliffe et al, 2000; Juarez et al, 2004). Moreover,
post-transcriptional regulation via miRNA-directed
cleavage was also shown for several, but not all, NAC
genes (Laufs et al, 2004; Guo et al, 2005; Yamaguchi
et al, 2008; Zhang et al, 2009). In addition, miR164, as
well as miR397, miR408, and miR528, were shown to
target laccase genes (Zhang et al, 2009). Some of the
latter are potentially involved in monolignol polymer-
ization in the cell wall through the regulation of cop-
per homeostasis (Abdel-Ghany et al, 2008). miR171,
which targets SCARECROW genes (Zhang et al,
2009), could also be a possible candidate involved
in variation of cell wall degradability. Finally, small
interfering RNA derived from the 3'-coding region of
CesA6 cellulose synthase of barley were shown to be
involved in the transition from primary to secondary
cell wall programs (Held et al, 2008).

The final candidate gene list

Based on the different considered functions re-
quired for the secondary cell wall assembly, 409 pu-
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tative candidate genes were shown in the maize ge-
nome (Supplementary Tables 1-8), out of which 130
were involved in phenolic compound biosynthesis, 81
were involved in cell wall carbohydrate biosynthesis,
and 198 were involved in regulation mechanisms. This
candidate gene list, which focused on genes known to
be involved in cell wall component biosynthesis and
regulation, cannot be considered as complete. Other
genes, whose roles in cell wall lignification and depo-
sition have not yet been defined, should very likely be
added to the list of candidates with a required actic-
tity in secondary cell wall assembly. Genes encoding
proteins of still unknown function should be added to
the list, as several of them are probably also involved
in lignified tissue biosynthesis and deposition. As ob-
served for all genes (Schnable et al, 2009), only a few
genes related to cell wall biosynthesis and assembly
were located around centromeres, and most of the
latter were located in proximal and distal positions
of chromosomes. When considering successive 30
Mbp long intervals all along chromosomes, a high-
er number of cell wall related genes were observed
in the 0 - 30 Mbp areas of chromosomes 2 and 5.
Similarly, a large number of cell wall genes were ob-
served in the distal areas of chromosomes 5, 6, and
8 (Figure 3). Gene duplications in tandem positions
were observed for several family members including
especially PAL in bins 2.03, 4.06, and 5.05 (2, 3, and
4 genes, respectively), ZRP4-like OMT in bins 2.05,
6.06, and 9.04 (2, 4, and 2 genes respectively), or gly-
cosyl transferase IRX10-like in 3.05, 6.07, and 8.06 (3,
2, and 2 genes, respectively).

Discussion and conclusion

In the search for a biomass ideotype in maize, it is
still open to debate whether breeding efforts should be
focused on either biomass yield or rather on biomass
degradability. A high biomass yield alone will certain-
ly lead to disappointing results in dairy cow feeding,
with reduced milk yields and/or the necessicity of an
extra cattle feeding with expensive concentrates due
to the lower silage intake, digestibility and energy
value. Similarly, for biofuel production, low degrad-
able biomass will incur greater transport, processing
and fermentation costs. However, fermentation costs
could be expected to be lower if acid, alkaline, and/or
heat pretreatments were used in biogas or bioethanol
processes. But such treatments are both expensive
and not environmentally friendly. Thus from an envi-
ronmental and economic point of view, it is essential
to breed more degradable plants, as well as plants
with cell walls more susceptible to pretreatment pro-
cesses. Using strategies allowing the introduction of
alternative monomers (aldehydes, ester conjugates,
...) at reasonably low levels will not greatly alter the
structural properties, as has been observed in maize
bm1 or sorghum bmr6 plants. But these modifica-
tions will render the lignin polymer much easier to
cleave into smaller fragments during pretreatments
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(Vanholme et al, 2012). Therefore, there is little doubt
that cell wall qualities should be among the major tar-
gets for the improvement of silage and biofuel grass
maize varieties. However, breeding grain maize vari-
eties for the specific ability of their straw to be used
as a bioproduct and converted into ethanol is likely
not economically possible in the short term period. In
grain maize hybrids, the elimination of very unfavor-
able lignin or cell wall structures should be progres-
sively added as breeding traits for bi-functional grain
and straw-ethanol maize plants.

Thanks to the huge advances in genetic and ge-
nomic tools and knowledge, maize is also an inescap-
able model plant for grass secondary wall lignification
and degradability studies, and consequently for for-
age and biofuel production improvements. At pres-
ent, similar research efforts are not being conducted
on cell wall biosynthesis in other annual or peren-
nial grass forage plants, nor in rice. The short-cycle
model C3 grass Brachypodium distachyon (Garvin,
2007), and the recently sequenced and proposed as
model plant for C4 grass Setaria italica (Bennetzen
et al, 2012; Zhang et al, 2012) will both be comple-
mentary resources for gene mining and validation.
The most important current limitation when it comes
to using maize as a model system in plant genomics
is the frequency of repeated elements, which repre-
sented between 75 and 80% of the genome, and the
presence of several hundreds of gene copy number
variations (CNV) together with several thousands of
presence-absence sequence variations (PAV) in the
maize genome (San Miguel et al, 1998; Meyers et al,
2001; Schnable et al, 2009; Springer et al, 2009; Belo
et al, 2010; Lai et al, 2010; Swanson-Wagner et al,
2010). As a consequence, despite the fact that high
throughput sequencing technologies are available,
sequence comparison between lines is made difficult
due to the difficulty of contiguing the obtained short-
read sequence.

Among plant polymers, lignins have metabolic
plasticity, with variable structures and non-conven-
tional monomer incorporation, giving large variation
in cell wall properties for which the underlying ge-
netic determinants are mainly unknown. The lignin
composition and structure in modern maize lines and
hybrids are the result of long term grass evolution
and short term maize breeding efforts towards high
yield, high standability, and biotic or abiotic stress
tolerances. To date, the challenge is to change cell
wall and lignin polymer properties while keeping the
high agronomic value of hybrids, that should be more
hardy and drought tolerant than those of the previous
decade, due to climatic changes.

Despite the fact that genes involved in cell wall
carbohydrate and phenolic component biosynthe-
sis have been listed, together with genes involved
in their regulation, only a (very) few can be currently
considered to be the relevant determinants of main
variations in cell wall degradability. Discovery of the
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relevant candidate genes involved in genetic variation
of cell wall degradability, and to be used in marker
assisted selection, will be based on a set of further
investigations. One of the most promising investiga-
tive methods will probably be based on studies of co-
localizations between cell wall trait QTLs and cell wall
related genes, taking into consideration genes and
QTL physical positions. Investigations in the F288 x
F271 RIL progeny have highlighted the possible role
of ZmMYB42 and a COV1-like gene for two cell wall
QTLs located in bin 4.09 (Courtial et al, 2012). Simi-
larly, three MYB, the 4CL2, and the CCR1 genes are
possible candidates for the cluster of cell wall QTLs
shown in bin 1.07, in the F838 x F286 RIL progeny
(Barriere et al, 2008). In the same progeny, the Zm-
MYBA46 is in close position to the cluster of QTLs lo-
cated between bin 10.02 and 10.04. In contrast, no
obvious candidate genes have yet been shown to
explain numerous previously shown QTLs. The latter
fact supports the possible role of genes of unknown
function, of genes with known function but not yet
related to cell wall assembly, as well as the probable
role of non-coding sequence as the relevant determi-
nants of variations in cell wall quality traits. Reverse
genetics and transposon tagging, together with QTL
fine mapping, are complementary essential strategies
to understand the major traits involved in plant cell
wall degradability variations.

In addition, the frequent clustering of QTLs for
cell wall related traits raised the question of whether
the underlying genetic determinant corresponds to a
unique factor, or to a small set of highly linked and
co-regulated genes. Colocalizations between cell
wall degradability, core lignin content, and syringal-
dehyde QTLs could correspond to a shared mecha-
nism involved in lignin biosynthesis and duration of
lignin deposition. In addition, a greater proportion of
S units in lignins could also correspond to a polymer
richer in $-O-4 linkages and thus more linear, with
greater masking effects on carbohydrates. Colocal-
izations between cell wall degradability, etherFA, and
diFA QTLs could correspond to other genetic mecha-
nisms involved in FA biosynthesis, in cross-linkages
between arabinoxylan chains and between arabinox-
ylans and lignins. Occurrences of the simultaneous
colocalizations between cell wall degradability, lignin
content and structure, and ferulate related trait QTLs
complicate the understanding and identification of the
possible underlying genetic determinant(s). A cluster
of linked genes involved in the different mechanisms
of cell wall biosynthesis and assembly is likely the sim-
plest situation to consider, but a single co-regulating
“master” factor located upstream in the pathway of
cell wall assembly can also be considered. Depend-
ing on colocalizing traits and QTLs, the two types of
situation probably coexist in the maize genome. The
fact that different genomic determinants are involved
in cell wall degradability variation and are linked in
close or identical positions strengthens the possibili-
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ties of breeding for higher values of this trait without
negative effects on agronomic value (yield, biotic
and abiotic stress tolerance). Nevertheless, marker-
assisted selection is essential in order to correctly
identify the favorable recombinations, which require
prior identification of the genes involved. Gene iden-
tification is all the more important given that there is
often great gap in agronomic value between lines of
interest for feeding value traits and elite modern lines.
Finally, the germplasm currently used in maize breed-
ing represents only a small share of the available ge-
netic resources. Most of this germplasm corresponds
to resources chosen for grain maize breeding, or to
progenies of resources chosen for the latter, even if
breeding companies also have programs devoted to
silage and now biofuel purposes. Consequently, it is
questionable whether it is of interest to carry out in-
vestigations on cell wall traits in unused accessions,
old lines, and exotic resources, in order to discover
new mechanisms or alleles allowing significant wall
degradability improvement, without (too) negative ef-
fects on yield and agronomic value.
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Supplementary table 1 - List of putative maize candidate genes involved in cell wall biosynthesis and assembly. Cellulose related genes.

Gene names Gene number Chr Pos Mbp Bin
Brittle stalk 2 COBRA-like GRMZM2G109326 9 123,24 9.04
Cellulose synthase 11 (CesAlla) GRMZM2G037413 2 29,35 2.03
Cellulose synthase 11 (CesA11b) GRMZM2G055795 3 198,37 3.07
Cellulose synthase 12 (CesA12) GRMZM2G142898 7 117,51 7.02
Cellulose synthase-1 (CesA-1) GRMZM2G112336 8 80,22 8.03
Cellulose synthase-2 (CesA-2) GRMZM2G027723 6 128,56 6.05
Cellulose synthase-3 (CesA-3) GRMZM2G039454 3 11,64 3.03
Cellulose synthase-4 (CesA-4) GRMZM2G424832 7 18,61 7.02
Cellulose synthase-5 (CesA-5) GRMZM2G111642 1 290,59 111
Cellulose synthase-6 (CesA-6) GRMZM2G113137 1 296,25 1.12
Cellulose synthase-7 (CesA-7) GRMZM2G025231 7 37,02 7.02
Cellulose synthase-8 (CesA-8) GRMZM2G177631 7 26,49 7.02
Cellulose synthase-9 (CesA-9) GRMZM2G018241 2 161,12 2.06
Chitinase-like POM1-CLT1-ELT1-CTL2-like GRMZM2G168364 7 134,14 7.03
FRA1-likel "kinesin motor region" GRMZM2G026560 5 206,46 5.07
FRA1-likel "kinesin motor region" GRMZM2G334142 5 206,31 5.07
FRA1-likel "kinesin motor region" GRMZM2G026218 7 47,93 7.02
FRA2-likel "AAA ATPase" ERH3 GRMZM2G054715 3 208,04 3.08
FRA2-like2 "AAA ATPase" ERH3 GRMZM2G017305 8 151,26 8.05
UDP sugar transporter (rice brittle stalk 14 Os02g40030-like) GRMZM2G133226 4 138,15 4.06
UDP sugar transporter (rice brittle stalk 14 0s02g40030-like) GRMZM2G02097 5 184,22 5.05
B-1,4-endoglucanase KORRIGAN-like GRMZM2G147849 1 273,69 1.10
B-1,4-endoglucanase KORRIGAN-like GRMZM2G110735 5 8,26 5.02




Supplementary table 2 - List of putative maize candidate genes involved in cell wall biosynthesis and assembly. Arabinoxylans related genes.

Gene names Gene number Chr Pos Mbp Bin
Feruloyl-AX B-1,2-xylosyl transferase (XAX1-0s02g22380-like, GT61) GRMZM2G094579 4 239,48 4.10
Feruloyl-AX B-1,2-xylosyl transferase (XAX1-0s02g22380-like, GT61) GRMZM2G098793 5 58,75 5.03
Feruloyl-AX B-1,2-xylosyl transferase (XAX1-0s02g22380-like, GT61) GRMZM2G062552 5 76,43 5.03
Feruloyl-AX B-1,2-xylosyl transferase (XAX1-0s02g22380-like, GT61) GRMZM2G354610 9 51,34 9.03
Feruloyl-AX B-1,2-xylosyl transferase (XAX1-0s02g22380-like, GT61) GRMZM2G074896 5 68,42 5.03
Transferase xylan-O-3-arabinosyl transferase (XAT1-like, GT61) GRMZM2G176576 3 166,69 3.06
Transferase xylan-O-3-arabinosyl transferase (XAT1-like, GT61) GRMZM2G447347 6 70,29 6.01
Transferase xylan-O-3-arabinosyl transferase (XAT2-like, GT61) GRMZM2G096946 4 219,6 4.09
Glycosyltransferase IRX8-like (GT8D) GRMZM2G107854 1 25,42 1.02
Glycosyltransferase IRX8-like (GT8D) GRMZM2G098434 3 124,64 3.04
Glycosyltransferase IRX8-like (GT8D) GRMZM2G113506 9 147,36 9.06
Xylan-related (OsIRX10-like (orthl), IRX10-like, GT47) GRMZM2G000581 8 160,34 8.06
Xylan-related (OsIRX10-like, IRX10-like, GT47) GRMZM2G134308 8 160,39 8.06
Xylan-related (OsIRX10-like (orthl), IRX10-like, GT47) GRMZM2G059825 6 162,55 6.07
Xylan-related (OsIRX10-like, IRX10-like, GT47) GRMZM2G059845 6 162,56 6.07
Xylan-related (OsIRX10-like (orthl), IRX10-like, GT47) GRMZM5G898668 3 157,02 3.05
Xylan-related (OsIRX10-like, IRX10-like, GT47) GRMZM2G056702 3 157,05 3.05
Xylan-related (OsIRX10-like, IRX10-like, GT47) GRMZM2G448834 3 157,08 3.05
Xylan-related (OsIRX10-like, IRX10-like, GT47) GRMZM2G152029 5 6,04 5.01
Xylan-related (OsIRX10-like, IRX10-like, GT47) GRMZM2G023020 2 62,92 2.04
UDP-arabinopyranose mutase (UAM1, Os03g40270-like) GRMZM2G073725 1 248,86 1.08
UDP-arabinopyranose mutase (UAM1, Os03g40270-like) GRMZM2G087326 5 18,77 5.03
UDP-arabinopyranose mutase (UAM2, Os04g56520-like) GRMZM2G173341 2 3,81 2.01
UDP-arabinopyranose mutase (UAM3, Os07g41360-like) GRMZM2G045287 7 164,24 7.05
UDP-D-glucose dehydrogenase (G6DH) GRMZM2G328500 1 278,13 1.10
UDP-D-glucose dehydrogenase (G6DH) GRMZM2G058244 1 249,42 1.08
UDP-D-glucose dehydrogenase (G6DH) GRMZM2G862540 5 6,69 5.01
UDP-D-Glucuronic acid decarboxylase GRMZM2G044027 1 41,47 1.03
UDP-D-Glucuronic acid decarboxylase GRMZM2G381473 3 57,10 3.04
UDP-D-Glucuronic acid decarboxylase GRMZM2G359234 3 181,70 3.06
UDP-D-Glucuronic acid decarboxylase GRMZM2G007405 6 138,25 6.05
UDP-D-Glucuronic acid decarboxylase GRMZM2G007195 8 87,04 8.03
UDP-D-Glucuronic acid decarboxylase GRMZM2G165357 9 139,41 9.05
UDP-D-Glucuronic acid decarboxylase GRMZM2G347717 9 138,88 9.05
UDP-D-xylose-4-epimerase (MURA4-like) GRMZM2G000632 1 47,47 1.03
UDP-D-xylose-4-epimerase (MURA4-like) GRMZM2G040397 2 9,50 2.02
UDP-D-xylose-4-epimerase (MUR4-like) GRMZM5G830983 9 136,62 9.05
UDP-D-xylose-4-epimerase (MURA4-like) GRMZM2G145460 10 142,59 10.07
Xylan glucuronosyltransferase (GUX1/GUX3, GT8) GRMZM2G135743 3 172,05 3.06
Xylan glucuronosyltransferase (GUX1/GUX3, GT8) GRMZM2G058472 6 147,97 6.05
Xylan glucuronosyltransferase (GUX1/GUX3, GT8) GRMZM2G002023 8 165,23 8.06
Xylan glucuronosyltransferase (GUX2, GT8) GRMZM2G109431 1 17,69 1.02
Xylan O-acetylation (Altered-Xyloglucan-4 AXY4 TBL27-like ) GRMZM2G340933 2 177,72 2.06
Xylan O-acetylation (Altered-Xyloglucan-4 AXY4 TBL27-like ) GRMZM2G039525 2 177,75 2.06
Xylan O-acetylation (Altered-Xyloglucan-4 AXY4 TBL27-like ) GRMZM2G131152 8 112,68 8.04
Xylan O-acetylation (Altered-Xyloglucan-4like AXY4like TBL22-like ) GRMZM2G004183 3 213,60 3.09
Xylan O-acetylation (Altered-Xyloglucan-4like AXY4like TBL22-like ) GRMZM2G107373 6 113,93 6.04
Xylan O-acetylation (Capsl RWA1-4 like) GRMZM2G463445 1 238,54 1.07
Xylan O-acetylation (Capsl RWAZ1-4 like) GRMZM2G076394 2 113,32 2.05
Xylan O-acetylation (Capsl RWA1-4 like) GRMZM2G370741 5 172,59 5.05
Xylan O-acetylation (Capsl RWAZ1-4 like) GRMZM2G458538 6 166,88 6.07
Xylan O-acetylation (Capsl RWA1-4 like) GRMZM2G020721 9 134,30 9.05
B-1,4-xylan synthase or xylosyltransferase (IRX14-like, GT43) GRMZM2G113655 5 50,09 5.03
B-1,4-xylan synthase or xylosyltransferase (IRX14-like, GT43) GRMZM2G150302 6 88,92 6.02
B-1,4-xylan synthase or xylosyltransferase (IRX9-like, GT43) GRMZM2G001079 1 44,18 1.03
B-1,4-xylan synthase or xylosyltransferase (IRX9-like, GT43) GRMZM2G012874 8 131,69 8.05
B-1,4-xylan synthase or xylosyltransferase (IRX9-like, GT43) GRMZM2G118959 9 138,24 9.05




Supplementary table 3 - List of putative maize candidate genes involved in cell wall biosynthesis and assembly. Genes of the shikimate pathway.

Gene names Gene number Chr Pos Mbp Bin
3-Dehydroquinate synthase (Solanum, DHQ) GRMZM2G573867 2 196,36 2.07
3-Dehydroquinate synthase (Solanum, DHQ) GRMZM2G051129 7 175,83 7.05
3-Deoxy-D-arabinoheptulosonate-7-phosphate synthase (DAHP, DHS1/2-like) GRMZM2G117707 7 166,47 7.05
3-Deoxy-D-arabinoheptulosonate-7-phosphate synthase (DAHP, DHS1/2-like) GRMZM2G365160 2 212,18 2.08
5-Enolpyruvylshikimate-3-phosphate synthase (At2g45300, EPSP) GRMZM5G877500 9 22,68 9.03
Adenosine kinase (At3g09820, ADK1) GRMZM2G540538 5 186,52 5.05
Adenosine kinase (At3g09820, ADK2) GRMZM2G135132 4 143,08 4.06
Adenosine kinase (At5g03300, ADK3) GRMZM2G089767 2 28,14 2.03
Avrogenate/prephenate dehydratase (ADT/PDT, AtADT1) GRMZM2G466543 2 165,87 2.06
Arogenate/prephenate dehydratase (ADT/PDT, AtADT12) GRMZM2G141273 1 43,75 1.03
Avrogenate/prephenate dehydratase (ADT/PDT, AtADT12) GRMZM2G125923 10 113,52 10.04
Avrogenate/prephenate dehydratase (ADT/PDT, AtADT2) GRMZM2G145451 9 138,33 9.05
Avrogenate/prephenate dehydrogenase (ADH/PDH, Atlg15710) GRMZM2G084942 5 59,29 5.03
Avrogenate/prephenate dehydrogenase (ADH/PDH, Atlg15710) GRMZM2G085117 5 59,30 5.03
Avrogenate/prephenate dehydrogenase (ADH/PDH, Atlg15710) GRMZM2G365961 6 85,80 6.02
Avrogenate/prephenate dehydrogenase (ADH/PDH, Atlg15710) GRMZM2G324297 9 61,36 9.03
Chorismate mutase (At1g69370, CM3) GRMZM2G028369 3 194,55 3.06
Chorismate mutase (At3g29200, CM1) GRMZM2G116087 8 173,11 8.08
Chorismate mutase (At5g10870, CM2) GRMZM2G179454 5 92,19 5.04
Chorismate mutase (AtCM123, CM4) GRMZM2G124365 8 173,10 8.08
Chorismate synthase (At1g48850, EMB1144) GRMZM2G164562 1 35,46 1.03
Chorismate synthase (At1g48850, EMB1144) GRMZM2G036861 9 141,94 9.05
Prephenate aminotransferase (Solanum, At2g22250, PAT) GRMZM2G400604 3 174,37 3.06
Prephenate aminotransferase (Solanum, At2g22250, PAT) GRMZM2G033799 8 101,41 8.03
Shikimate kinase (AtSK1, AtSK2) GRMZM2G004590 2 6,49 2.01
Shikimate kinase (AtSK1, AtSK2) GRMZM2G161566 4 181,73 4.07
Shikimate kinase (AtSK1, AtSK2) GRMZM2G070218 5 207,71 5.07




Supplementary table 4 - List of putative maize candidate genes involved in cell wall biosynthesis and assembly. Monolignol biosynthesis, transport, and

polymerization related genes.

Gene names Gene number Chr Pos Mbp Bin
4CL1 (4CL2 Lubberstedt) GRMZM2G075333 5 89,15 5.04
4CL2 (4CL1 Lubberstedt) GRMZM2G048522 1 210,10 1.07
ABC transporter AtABCG29-like GRMZM2G479018 2 39,75 2.04
ABC transporter AtABCG29-like GRMZM2G000614 3 201,54 3.07
ABC transporter ATPDRG6-like GRMZM2G391815 1 300,53 1.12
ABC transporter ATPDR6-like GRMZM2G003411 4 231,40 4.09
ABC transporter ATPDRG6-like GRMZM2G319138 10 99,21 10.04
ABC transporter ATPDR7-like GRMZM2G118243 3 10,27 3.03
ABC transporter EucaWood ctg6414/ PGP13 GRMZM2G085111 8 0,40 8,00
ABC transporter MaizeWall 3024030.2.1 GRMZM2G135199 1 299,98 1.12
ABC transporter MaizeWall 3871923.2.1 GRMZM2G177812 2 23,88 2.03
C3H1 GRMZM2G138074 3 187,71 3.06
C3H2 GRMZM2G140817 6 155,65 6.06
C4H1 GRMZM2G139874 8 83,79 8.03
C4H2 GRMZM2G010468 8 170,45 8.08
CAD ZmCAD1 (EgCADL1 like) GRMZM2G179981 5 130,66 5.04
CAD ZmCAD?2 (bm1, EgCAD?2 like) GRMZM5G844562 5 99,00 5.04
CAD10 (EgCAD2-like) AtCAD3/6/9 GRMZM2G700188 7 108,34 7.02
CADG6/SAD (EgCAD?2 like) AtCAD3/6/9 GRMZM2G046070 2 10,53 2.02
CAD9 (EgCAD2-like) AtCAD3/6/9 AC234163.1_FG002 7 108,25 7.02
CCoAOMT1 GRMZM2G127948 6 79,19 6.01
CCoAOMT2 GRMZM2G099363 9 16,32 9.02
CCoAOMT3 GRMZM2G004138 2 189,28 2.07
CCoAOMT4 GRMZM2G033952 4 198,08 4.08
CCoAOMT5 GRMZM2G332522 4 198,08 4.08
CCR1 (ZmCCR1) GRMZM2G131205 1 211,52 1.07
CCR2 (ZmCCR?2) GRMZM2G131836 7 47,72 7.02
CCR8 AtCCR2-like GRMZM2G099420 4 171,78 4.06
CCR-like GRMZM2G050076 7 133,61 7.03
COMT (bm3) AC196475.3_FG004 4 32,25 4.04
F5H1 (Cytochrome P450 CYP84A33v1) AC210173.4_FG005 1 224,04 1.07
F5H2 GRMZM2G100158 5 22,66 5.03
HCT1 GRMZM2G035584 5 183,61 5.05
HCT2 GRMZM2G158083 2 31,83 2.04
OMT ZRP4-likel GRMZM2G408458 4 18,37 4.03
OMT ZRP4-like2a GRMZM2G036048 2 126,76 2.05
OMT ZRP4-like2b SBP1 GRMZM2G085924 2 127,09 2.05
OMT ZRP4-like2c GRMZM2G147491 2 118,54 2.05
OMT ZRP4-like3a GRMZM2G093092 9 119,78 9.04
OMT ZRP4-like3b GRMZM2G106172 9 119,84 9.04
OMT ZRP4-like4 GRMZM2G097297 4 192,92 4.08
OMT ZRP4-like5a GRMZM2G140996 6 158,66 6.06
OMT ZRP4-like5b GRMZM2G141026 6 158,69 6.06
OMT ZRP4-like5c GRMZM2G102863 6 158,76 6.06
OMT ZRP4-like5d GRMZM2G124799 6 158,84 6.06
PAL more distant GRMZM2G153871 4 231,70 4.09
PAL pal3-like GRMZM2G063917 4 143,51 4.06
PAL pal3-like GRMZM2G334660 5 186,73 5.05
PAL pal3-like GRMZM2G170692 5 186,80 5.05
PAL2a (pal2 locus) GRMZM2G441347 2 28,12 2.03
PAL2b (pal2 locus) GRMZM2G118345 2 28,05 2.03
PAL3a (pal3 locus ZmPAL) GRMZM2G074604 5 186,68 5.05
PAL3b (pal3 locus) GRMZM2G029048 5 186,73 5.05
PAL3c (pal3 locus) GRMZM2G081582 4 143,47 4.06
PAL3d (pal3 locus) GRMZM2G160541 4 143,38 4.06
ZmLac Atlac2-Atlac17-like GRMZM2G305526 1 39,93 1.03
ZmLac putative GRMZM2G166857 2 229,90 2.09
ZmLac putative GRMZM2G169033 4 181,53 4.07
ZmLac putative GRMZM2G320786 5 207,89 5.07
ZmLacla Atl17-like(orthl) GRMZM2G072780 3 180,68 3.06
ZmLacla' Atlac17-Atlac2-like GRMZM2G164467 1 260,07 1.09
ZmLacla Atlac2-Atlac17-like GRMZM2G447271 8 168,76 8.07
ZmLac2 (multicopper oxidase 3) GRMZM2G141376 9 77,55 9.03
ZmLac3 Atlac12-like GRMZM2G388587 4 183,73 4.08
ZmLac4 Atlac12-like GRMZM5G814718 1 46,41 1.03
ZmLac5 lacl GRMZM5G842071 3 179,12 3.06
ZmLac6 Atlac2/12/17-like GRMZM2G146152 6 151,54 6.05



Gene names Gene number Chr Pos Mbp Bin
ZmLac7 Atlac12-like(orthl) GRMZM2G132169 3 183,65 3.06
ZmLac8 Atlac12-like GRMZM2G336337 8 170,04 8.08
ZmPox12 GRMZM2G103342 3 146,52 3.05
ZmPox2 GRMZM2G040638 1 63,65 1.04
ZmPox3 GRMZM2G135108 6 125,01 6.05
ZmPox39 GRMZM2G085967 5 47,58 5.03
ZmPox54 GRMZM2G088765 1 110,49 1.05




Supplementary table 5 - List of putative maize candidate genes involved in cell wall biosynthesis and assembly. Genes of the the S-adenosyl-l-methionine

cycles.

Gene names Gene number Chr Pos Mbp Bin

Homocysteine S-methyltransferase HMT1 AC233893.1_FG001 9 146,26 9.06
Homocysteine S-methyltransferase HMT2 GRMZM2G117240 1 171,88 1.05
Homocysteine S-methyltransferase HMT3 GRMZM2G152470 3 121,07 3.04
Homocysteine S-methyltransferase HMT4 GRMZM2G039166 3 192,22 3.06
Methionine synthase (At3g03780, AtMS2) GRMZM2G165747 1 259,21 1.09
Methionine synthase (At5g17920, AtMS1) GRMZM2G149751 1 176,84 1.05
Methionine synthase (AtMS1, AtMS2) GRMZM2G112149 5 15,55 5.02
Methylenetetrahydrofolate reductase (At2g44160, MTHFR?2) GRMZM2G034278 5 2,86 5.00
Methylenetetrahydrofolate reductase (At3g59970, MTHFR1) (bm2) GRMZM2G347056 1 292,09 112
S-adenosyl-homocysteine hydrolase (At3g23810, SAHH?2) GRMZM2G111909 2 120,93 2.05
S-adenosyl-homocysteine hydrolase (At4g13940, SAHH1) GRMZM2G015295 4 21,14 4.03
S-adenosylmethionine synthetase SAMS1 AC199526.4 FG001 3 58,90 3.04
S-adenosylmethionine synthetase SAMS2 GRMZM2G054123 8 38,41 8.03
S-adenosylmethionine synthetase SAMS3 GRMZM2G117198 8 129,62 8.05
S-adenosylmethionine synthetase SAMS4 GRMZM2G061135 10 86,41 10.03
S-AdoMet Methionine S-methyltransferase (At5g49810, MMT) GRMZM2G098039 8 135,05 8.05




Supplementary table 6 - List of putative maize candidate genes involved in cell wall biosynthesis and assembly. Genes involved in arabinoxylan
feruloylation.

Gene names Gene number Chr Pos Mbp Bin
Transferase Ara-CoA-acylT pCA-transferase (PF02458) GRMZM2G305900 3 9,85 3.03
Transferase Ara-CoA-acylT pCA-transferase (PF02458) GRMZM2G108714 6 128,05 6.05
Transferase Ara-CoA-acylT pCA-transferase (PF02458) GRMZM2G375159 8 18,44 8.03
Transferase Ara-CoA-acylT pCA-transferase (PF02458) GRMZM2G060210 8 90,58 8.03
Transferase Ara-CoA-acylT pCA-transferase (PF02458) GRMZM2G159641 9 87,36 9.03
Transferase Ara-CoA-acylT1 (PF02458) GRMZM2G314898 3 8,30 3.03
Transferase Ara-CoA-acylT1 (PF02458) GRMZM2G107027 6 103,32 6.03
Transferase Ara-CoA-acylT2 (PF02458) GRMZM2G094428 3 225,34 3.09
Transferase Ara-CoA-acylT2 (PF02458) GRMZM2G050072 8 143,28 8.05
Transferase Ara-CoA-acylT2 (PF02458) GRMZM2G050270 8 143,28 8.05
Transferase BAHD pCA-CoA acyltransferase GRMZM2G130728 6 17,95 6.00
Transferase BAHD pCA-CoA acyltransferase GRMZM2G028104 10 86,98 10.03
ZmALDH RF2C GRMZM2G097699 3 221,71 3.09

ZmALDH RF2D GRMZM2G071021

w

221,69 3.09




Supplementary table 7 - List of putative maize candidate genes involved in cell wall biosynthesis and assembly. Transcription factors of the MYB and

NAC families, and related genes.

Gene names Gene number Chr Pos Mbp Bin
Basic helix-loop-helix bHLH GRMZM2G017586 4 35,58 4.05
Basic helix-loop-helix bHLH GRMZM2G082586 7 128,71 7.03
Basic helix-loop-helix bHLH GRMZM2G089501 7 130,24 7.03
Basic helix-loop-helix bHLH GRMZM2G049229 9 112,01 9.04
Basic helix-loop-helix bHLH GRMZM2G014282 10 4,90 10.01
Basic helix-loop-helix bHLH GRMZM2G093744 10 83,59 10.03
Basic helix-loop-helix bHLH GRMZM2G009478 2 188,53 2.07
Basic-leucine zipper (bZIP) GRMZM2G157722 4 57,68 4.05
Basic-leucine zipper (bZIP) GRMZM2G133331 6 116,75 6.04
Basic-leucine zipper (bZIP) ABF2 GRMZM2G478417 1 199,49 1.07
KNAT7-likel At1g62990 (ELK KNOX1) GRMZM2G159431 1 5,01 1.01
KNAT7-like2 At1g62990 (ELK KNOX1) GRMZM2G055243 9 92,87 9.03
KNAT7-like3 (ELK KNOX1) GRMZM2G060507 9 153,74 9.07
KNAT7-like4 (ELK KNOX1) GRMZM2G433591 4 235,21 4.09
KNAT7-like5 (ELK KNOX1) GRMZM2G370332 5 94,45 5.04
MYB (G13) ZmMYB019 AtMYB61-like GRMZM2G147698 1 64,24 1.04
MYB (G13) ZmMYB044 AtMYB61-like GRMZM2G052377 3 13,2 3.03
MYB (G13) ZmMYB045 AtMYB61-like GRMZM2G064744 3 227,39 3.09
MYB (G13) ZmMYB100 AtMYB61-like GRMZM2G175232 6 162,11 6.07
MYB (G13) ZmMYB117 AtMYB61-like GRMZM2G003406 8 153,46 8.05
MYB (G13) ZmMYB123 AtMYB61-like GRMZM2G119693 8 63,55 8.03
MYB (G13) ZmMYB126 AtMYB61-like GRMZM2G171781 8 129,07 8.05
MYB (G13) ZmMYB150 AtMYB61-like GRMZM2G127490 10 87,79 10.03
MYB (G13) ZmMYB040 AtMYB61-like GRMZM2G017520 3 48,49 3.04
MYB (G13) ZmMYB114 AtMYB61-like GRMZM2G150841 7 168,29 7.05
MYB (G2) ZmMYB027 AtMYB58-like GRMZM2G048295 2 29,54 2.03
MYB (G2) ZmMYB069 AtMY B58-like GRMZM2G127857 4 142,64 4.06
MYB (G2) ZmMYB083 AtMY B58-like GRMZM2G095904 5 186,41 5.05
MYB (G2) ZmMYB144 AtMY B58-like AC206901.3_FG005 10 130,72 10.05
MYB (G28) ZmMYB130 AtMYB5-like GRMZM2G395672 8 152,77 8.05
MYB (G29) ZmMYB047 AtMYB61-like GRMZM2G088783 3 204,15 3.07
MYB (G29) ZmMYB116 AtMYB61-like GRMZM2G172327 7 150,09 7.03
MYB (G3) ZmMYB026 AtMYB63-like GRMZM2G038722 2 13,30 2.02
MYB (G3) ZmMYBO075 AtMYB63-like GRMZM5G833253 4 157,77 4.06
MYB (G3) ZmMYB148 AtMYB63-like GRMZM2G097636 10 140,19 10.07
MYB (G3) ZmMYB149 AtMYB63-like GRMZM2G097638 10 140,19 10.07
MYB (G31) ZmMYB146 (MYB46) EgMYB2-like GRMZM2G052606 10 28,60 10.03
MYB (G4) ZmMYB010 AtMYB4-like GRMZM2G084583 1 206,86 1.07
MYB (G4) ZmMYB028 (MYB31) AtMY B4-like GRMZM2G050305 2 196,29 2.07
MYB (G4) ZmMYBO035 AtMY B4-like GRMZM2G124715 2 131,35 2.05
MYB (G4) ZmMYB041 AtMYB4-like GRMZM2G041415 3 140,12 3.05
MYB (G4) ZmMYBO052 AtMY B4-like GRMZM2G160838 3 173,52 3.06
MYB (G4) ZmMYB065 AtMYB4-like GRMZM2G089244 4 206,87 4.09
MYB (G4) ZmMYBO073 (MYB42) AtMYB4-like GRMZM2G419239 4 216,61 4.09
MYB (G4) ZmMYB094 AtMY B4-like GRMZM2G077789 6 150,69 6.05
MYB (G4) ZmMYB106 AtMY B4-like GRMZM2G000818 7 176,13 7.05
MYB (G4) ZmMYB131 AtMYB4-like GRMZM2G405094 8 165,88 8.07
MYB (G4) ZmMYB132 AtMY B4-like GRMZM2G431156 8 101,78 8.03
MYB (G8) ZmMYB012 AtMYB85-like GRMZM2G037650 1 207,18 1.07
MYB (G8) ZmMYB064 AtMY B85-like GRMZM2G055158 4 166,91 4.06
MYB (G8) ZmMYB071 AtMYB85-like GRMZM2G138427 4 216,21 4.09
MYB (G8) ZmMYB003 AtMY B85-like GRMZM2G106558 1 215,34 1.07
MYB (G8) ZmMYB003 AtMY B85-like GRMZM2G104551 7 143,21 7.03
MYB (G8) ZmMYB113 AtMYB85-like GRMZM2G126566 7 108,79 7.02
MYB (G8) ZmMYB115 AtMYB85-like GRMZM2G169356 7 108,70 7.02
MYB (G8) ZmMYB92 AtMY B85-like GRMZM2G048910 6 117,95 6.04
MYB (G30) ZmMYB156 AtMYB103-like GRMZM2G325907 10 81,83 10.03
MYB (G21) ZmMYB059 AtMYB69-like GRMZM5G803355 3 138,4 3.05
MYB (G21) ZmMYB090 AtMYB52-like GRMZM2G455869 5 10,17 5.02
MYB (G21) ZmMYB008 AtMY B54-like GRMZM2G077147 1 269,64 1.09
NAC ZmNAC AtNAC082 VNI1 At5g09330 GRMZM2G340305 1 203,09 1.07
NAC ZmNAC AtNAC082 VNI1 At5g09330 GRMZM2G176677 2 26,43 2.03
NAC ZmNAC AtNAC082 VNI1 At5g09330 GRMZM2G125777 4 50,10 4.05
NAC ZmNAC AtNAC082 VNI1 At5g09330 GRMZM2G456568 6 147,92 6.05
NAC ZmNAC AtNAC082 VNI1 At5g09330 GRMZM2G104400 8 102,54 8.03
NAC ZmNAC AtNAC083 VNI2 At5g13180 GRMZM2G123667 4 207,98 4.09
NAC ZmNAC AtNAC083 VNI2 At5g13180 GRMZM2G336533 5 2,89 5.00



Gene names Gene number Chr Pos Mbp Bin

NAC ZmNAC AtNAC083 VNI2 At5g13180 GRMZM2G179885 7 158,24 7.04
NAC ZmNAC AtNAC083 VNI2 At5g13180 GRMZM2G068973 8 170,86 8.08
NAC ZmNAC AtNAC083 VNI2 At5g13180 GRMZM2G126936 9 145,84 9.06
NAC ZmNAC AtNAC083 VNI2 At5g13180 GRMZM2G430849 7 173,52 7.05
NAC ZmNAC AtXND1-like ZmNAC037/079 GRMZM2G094067 5 172,92 5.05
NAC ZmNAC AtXND1-like ZmNAC096 GRMZM2G316840 2 48,82 2.04
NAC ZmNAC NST1-like ZmNAC076 ZmSWN7a GRMZM2G041668 9 28,04 9.03
NAC ZmNAC NST1-like ZmNAC169 ZmSWN6 GRMZM2G178998 2 22,70 2.03
NAC ZmNAC NST1-like ZmNAC176 ZmSWN7b GRMZM2G440219 9 28,14 9.03
NAC ZmNAC SND1/NST1-like GRMZM2G155816 5 142,18 5.04
NAC ZmNAC SND1/NST1-like GRMZM2G104074 9 64,93 9.03
NAC ZmNAC SND1/NST1-like ZmNAC014 GRMZM2G092465 6 431 6,00
NAC ZmNAC SND1/NST1-like ZmNAC143 ZmSWN2 GRMZM2G069047 4 38,03 4.05
NAC ZmNAC SND1-like GRMZM2G435824 10 119,13 10.04
NAC ZmNAC SND1-like ZmNACO020 GRMZM2G091490 6 66,03 6.01
NAC ZmNAC SND1-like ZmNACO091 GRMZM2G099144 2 47,05 2.04
NAC ZmNAC SND1-like ZmNAC5 GRMZM2G041746 6 106,25 6.03
NAC ZmNAC SND2/SND3 ANAC010 GRMZM2G166721 3 6,94 3.02
NAC ZmNAC SND2/SND3 ARGOS ZmNAC080/156 GRMZM2G137546 2 220,00 2.08
NAC ZmNAC SND2/SND3-like GRMZM2G112681 8 20,83 8.03
NAC ZmNAC SND2/SND3-like ZmNAC101/182 GRMZM2G058518 3 210,23 3.08
NAC ZmNAC SND2/SND3-like ZmMNAC123 GRMZM2G031200 6 164,50 6.07
NAC ZmNAC SND3/SND2-like ZmNACO019 GRMZM2G134717 8 149,81 8.05
NAC ZmNAC VND1 ZmNAC184 ZmSWN5 GRMZM2G025642 1 5,64 1.01
NAC ZmNAC VND6-like GRMZM2G172053 9 153,53 9.07
NAC ZmNAC VND6-like ANAC012 GRMZM2G315140 5 188,92 5.05
NAC ZmNAC VND6-like ZmMNAC178 GRMZM2G354151 4 148,82 4.06
NAC ZmNAC VND7-like ZmNAC168/186 ZmSWN4 AC212859.3_FG008 2 25,75 2.03
NAC ZmNAC VND7-like ZmNAC032/118 ZmSWN1 GRMZM2G171395 9 23,28 9.03
NAC ZmNAC VND7-like ZmMNAC076 ZmSWN3 GRMZM2G052239 6 0,78 6,00
NAC ZmNAC VND7-like ZmNAC115 GRMZM2G0438826 4 59,34 4.05
Ovate family protein OFP1/4/17-like GRMZM2G026927 6 153,84 6.06
Ovate family protein OFP1/4-like GRMZM2G075988 1 56,31 1.03
Ovate family protein OFP1/4-like GRMZM2G330159 3 184,31 3.06
Ovate family protein OFP1/4-like GRMZM2G127680 6 159,01 6.06
Ovate family protein OFP1/4-like GRMZM2G067376 8 91,86 8.03
Ovate family protein OFP1/4-like AC204502.4_FGP006 8 170,28 8.08
Ovate family protein OFP4-like GRMZM2G127431 3 198,04 3.07
Ovate family protein OFP4-like GRMZM5G845472 7 172,97 7.05
Ovate family protein OFP4-like GRMZM2G312221 8 109,95 8.03
WDA40 repeat-like EW CCAAT-HAP5 GRMZM2G038032 6 162,88 6.07
WDA40 repeat-like EW CCAAT-HAPS GRMZM2G040477 8 65,75 8.03
WD40 repeat-like EW WD40 GRMZM2G022627 2 36,94 2.04
WD40-like (EgMYB?2 Prt) GRMZM2G123709 9 126,00 9.04




Supplementary table 8 - List of putative maize candidate genes involved in cell wall biosynthesis and assembly. Miscellaneous genes involved in regulation

of lignified tissue assembly.

Gene names Gene number Chr Pos Mbp Bin
AtMAP70-1 At1968060 GRMZM5G832989 5 205,31 5.06
AtMAP70-1 At1g68060 GRMZM2G008556 6 115,64 6.04
AtMAP70-1 At1g68060 GRMZM2G039325 9 0,57 9,00
COV LCV2-like GRMZM2G149662 3 175,56 3.06
COV LCV2-like GRMZM2G048150 5 20,68 5.03
COV LCV2-like GRMZM2G073415 6 150,26 6.05
COV LCV2-like GRMZM2G052855 8 100,96 8.03
COV LCV2-like GRMZM2G046098 8 166,41 8.07
COV LCV3-like GRMZM2G125985 10 13,55 10.02
COV1-like GRMZM2G123790 4 222,80 4.09
COV1-like GRMZM2G146511 5 136,77 5.04
COV1-like GRMZM2G101533 6 159,77 6.06
COV1-like GRMZM2G052200 8 125,01 8.05
GRAS SCARECROW-likel At1g21450 GRMZM2G431309 2 207,84 2.08
GRAS SCARECROW-likel At1g21450 GRMZM5G885274 5 205,08 5.06
GRAS SCARECROW-likel At1g21450 GRMZM2G153333 6 147,91 6.05
GRAS SCARECROW-likel At1g21450 GRMZM2G098517 7 161,29 7.04
GRAS SCARECROW-likel At1g21450 GRMZM2G028039 9 149,17 9.07
HD-ZIP ATHB8 HD-ZIPIII (PtrHD7-like) GRMZM2G469551 1 230,54 1.07
HD-ZIP ATHB-8 HD-ZIPIlI (PtrHD7-like) GRMZM2G178102 3 123,27 3.04
HD-ZIP ATHB-8 HD-ZIPIII bZIP (PtrHD7-like) GRMZM2G003509 1 173,23 1.05
HD-ZIP IFL1 (ATHB8) HD-ZIPIII rld1 (PtrHD7-like) GRMZM2G109987 9 154,65 9.07
HD-ZIP IFL1 HD-ZIPIII rld2 (ATHB8) bZIP (PtrHD7-like) GRMZM2G042250 1 2,80 1.01
HD-ZIP ATHB-8 HD-ZIPIII (PtrHD7-like) AC187157.4_FG005 8 22,64 8.03
ROP AtROP3 EgROP1 At2g17800 GRMZM2G001953 4 182,19 4.07
ROP AtROP3 EgROP1 At2g17800 AC209819.3_FG012 8 122,95 8.05
ROP AtROP3 EgROP1 At2g17800 GRMZM2G102946 9 3,07 9,00
ROP family GTPase ROP2 AtROP3 EgROP1 GRMZM5G846811 4 238,05 4.10
ROP family GTPase ROP9 AtROP3 EgROP1 GRMZM5G803949 5 70,88 5.03
ROP Ras small GTPase Rho type AtROP3 EgROP1 GRMZM2G375002 5 217,60 5.09
ROP Ras small GTPase Rho type AtROP3 EgROP1 GRMZM2G415327 5 206,15 5.06
ROP Ras small GTPase Rho type EU968843.1* GRMZM2G073609 5 217,61 5.09
ROP Ras small GTPase ROP6 AtROP3 EgROP1 GRMZM2G176217 6 158,45 6.06
SHINE1/ SHINE2/ SHINE3 GRMZM2G085678 5 114,10 5.04
SHINE1/ SHINE2/ SHINE3/ AP2/ERF GRMZM2G106591 6 102,42 6.03
SHP1 MADSbox-like AGL11 STK (SEEDSTICK) GRMZM2G052890 6 131,83 6.05
SHP1 MADSbox-like Kbox AP1 (APETALAL) GRMZM2G072582 7 2,07 7,00
SHP1 MADSbox-like MADSbox GRMZM2G160687 3 137,23 3.05
SHP1 MADSbox-like MADSbox GRMZM2G160565 5 196,55 5.06
SHP1 MADSbox-like MADSbox GRMZM2G359952 8 22,98 8.03
SHP1 MADSbox-like MADSbox GRMZM2G010669 10 30,87 10.03
SHP1 ZmZAGS5 Shatterproof Agamous GRMZM2G003514 4 156,09 4.06
Zinc finger C2H2-like GRMZM2G048154 1 42,12 1.03
Zinc finger C2H2-like GRMZM2G112251 9 139,17 9.05
Zinc finger C2H2-like GRMZM2G165355 9 143,86 9.06
Zinc finger C2H2-like GRMZM2G095323 10 37,64 10.03
Zinc finger C2H2-like indeterminate growthl (id1) GRMZM2G171073 1 23,57 1.02
Zinc finger C2H2-like lot of est GRMZM5G887286 2 222,16 2.08
Zinc finger C2H2-like lot of est GRMZM5G898314 8 163,12 8.06
Zinc finger C2H2-like RNA recognit motif RNP-1 GRMZM2G019266 3 172,63 3.06
Zinc finger C2H2-like RNA recognit motif RNP-1 GRMZM2G005236 8 165,55 8.06
Zinc finger C3HC4-type RING GRMZM2G077307 3 201,99 3.07
Zinc finger C3HC4-type RING GRMZM2G056270 10 25,30 10.03
Zinc finger C3HC4-type RING lot EST GRMZM2G062724 1 10,04 1.01
Zinc finger CCCH-type AtC3H14-like GRMZM5G830949 8 146,98 8.05
Zinc finger CCCH-type AtC3H14-likel GRMZM2G157927 3 214,75 3.09
Zinc finger CCCH-type AtC3H14-likel GRMZM2G149347 6 165,86 6.07
Zinc finger CCCH-type AtU2AF35b GRMZM2G025014 2 232,64 2.09
Zinc finger CCCH-type AtU2AF35b GRMZM2G020928 6 164,57 6.07
Zinc finger CCCH-type AtU2AF35b GRMZM2G177229 7 133,53 7.03
Zinc finger CCCH-type AtU2AF35b GRMZM2G031827 8 70,14 8.03
Zinc finger CCCH-type C3H GRMZM2G148090 9 155,98 9.07
Zinc finger CCCH-type RNA recognit motif RNP-1 GRMZM2G168163 2 186,90 2.07
Zinc finger CCCH-type RNA recognit motif RNP-1 GRMZM2G467907 7 127,15 7.02
Zinc finger DOF-typa HCA2 At5g62940 GRMZM2G589696 4 160,28 4.06
Zinc finger DOF-typa HCA2 At5g62940 GRMZM2G140694 5 201,38 5.06
Zinc finger DOF-type At1g21340 GRMZM2G135703 3 175,97 3.06



Gene names Gene number Chr Pos Mbp Bin
Zinc finger DOF-type At1g21340 GRMZM2G371058 6 149,13 6.05
Zinc finger DOF-type At1g21340 GRMZM2G042218 8 166,58 8.07
Zinc finger DOF-type At1g64620 GRMZM2G010290 10 137,21 10.06
Zinc finger DOF-type At3g21270 GRMZM2G011832 1 246,48 1.08
Zinc finger DOF-type At3g21270 GRMZM2G084130 5 6,11 5.01
Zinc finger DOF-type At3g21270 GRMZM2G178767 5 19,53 5.03
Zinc finger Lim-type GRMZM2G024887 10 132,70 10.05
Zinc finger Lim-type Ntlim1/2-like GRMZM2G175761 3 134,61 3.05
Zinc finger Lim-type Ntlim1-like GRMZM2G485184 6 21,97 6.01
Zinc finger Lim-type ZmLim3 MaizeWall GRMZM2G153268 2 23,13 2.03
Zinc finger WRKY ZmWRKY 15 AtWRKY 12-like GRMZM2G123387 2 21,05 2.02
Zinc finger WRKY ZmWRKY50 AtWRKY 12-like GRMZM2G377217 4 151,07 4.06
Zinc finger WRKY ZmWRKY110 VVWRKY 2-like GRMZM2G171428 9 124,23 9.04
Zinc finger WRKY ZmWRKY23 VVWRKY2-like GRMZM2G130854 2 207,84 2.08
Zinc finger WRKY ZmWRKY82 VVWWRKY 2-like GRMZM2G398506 7 161,29 7.04
Fasciclin AtFLA11/IRX13-like AtFLA12-like GRMZM2G022931 3 210,51 3.08
Fasciclin AtFLA11/IRX13-like AtFLA12-like GRMZM2G177242 3 15,06 3.03
Fasciclin AtFLA4-like (SOS5 mutant) AC213621.5_FGT004 6 151,58 6.05
Fasciclin AtFLA4-like (SOS5 mutant) GRMZM2G421415 8 116,49 8.04
Fasciclin AtFLA4-like (SOS5 mutant) GRMZM?2G035933 8 168,94 8.07






