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Abstract

Field experiments were conducted in calcareous and non-calcareous soils in order to study the biofortification of
Fe and Zn in maize grain using arbuscular mycorrhizal fungal (AMF) symbiosis. Treatments consisted of two levels
of FeSO, (12.5 and 25 kg ha™), two levels of ZnSO, (12.5 and 25 kg ha™) and two mycorrhizal treatments [with
(M+) or without (M-)] inoculum carrying Glomus intraradices) replicated four times in a factorial RBD. The results
revealed that AMF colonization significantly increased soil available Fe (M- 1.9; M+ 2.1 mg kg™') and Zn (M- 4.16;
M+ 4.50 mg kg™). Siderophore production in M+ plants (51.4 pmol cm hr) were higher than M- plants (39.5 pmol
cm hr) and the increase observed irrespective of levels of Fe and Zn. Increased availability of Fe and Zn in soil in
combination with enhanced concentrations in plants assisted M+ plants to maintain higher micronutrient contents
in grains (Fe M- 31.2, M+ 35.3; Zn M- 45.1, M+ 52.4 mg kg™). Mycorrhizal plants produced grains with had 10-
15% higher Fe and Zn contents while anti-nutritional factor “phytic acid” had decreased (M- 1.13; M+ 1.07 mg
g™). Overall, the data suggest that mycorrhizal fungal inoculation assists in biofortification kernels with Fe and Zn
besides circumventing the impact of anti-nutritional factors.

Keywords: arbuscular mycorrhizal fungal (AMF), maize (Zea mays L), soil iron and zinc, nutritional quality, biofortifica-

tion

Introduction

Micronutrient malnutrition is most prevalent in
developing countries and deficiencies of Fe, Zn, and
vitamin A are among the ten leading causes of illness
and diseases in low-income countries (WHO, 2002).
Widespread micronutrient malnutrition has enor-
mous socio—economic consequences, resulting in
increased mortality and morbidity, impaired growth,
development and learning ability in infants and chil-
dren, and loss in work capacity of adults; these in turn
undermine economic growth and perpetuate poverty.
Tackling micronutrient malnutrition is considered to
be among the best investments that will generate a
high return in socio-economic benefits (The World
Bank, 2006).

Zinc and iron deficiencies are the most common
micronutrient deficiencies in human populations af-
fecting health of over three billion people worldwide
(Welch and Graham, 2004; Cakmak et al, 2010). Ac-
cording to a report published by the World Health Or-
ganization in 2002, deficiencies of Zn and Fe ranked
fifth and sixth in terms of leading disease causing of
high mortality in developing countries (WHO, 2002).
Zinc deficiency causes impairments in brain develop-
ment and wound healing and increases susceptibility
to infectious diseases including diarrhoea, pneumo-
nia and malaria by weakening the immune system
(Black et al, 2008). Iron deficiency impairs physical

growth, mental development and learning capacity in
children, reduces reproductivity in adults and repre-
sents the most common cause of anemia (Kennedy
et al, 2003). In most cases, Zn and Fe deficiencies
are caused by inadequate dietary intake of Zn and Fe
(Welch and Graham, 2004). In many countries, wheat
is the main component of the diet and responsible for
more than 50% of the daily caloric intake (Cakmalk,
2008). Wheat is, however, inherently too poor in Zn
and Fe to meet the recommended dietary allowances
for human-beings and also rich in anti-nutritional fac-
tor “phytic acid” which inhibits the bioavailability of
micronutrients (Welch and Graham, 2004; Cakmak et
al, 2010).The current Recommended Dietary Allow-
ance (RDA) for Zn and Fe average daily level of intake
sufficient to meet the nutrient requirements is 11 and
8 mg day' respectively.

Biofortification is a process in which plants are al-
lowed to take up the minerals (Fe and Zn) from the
soil and immobilize them in the grains so as to pro-
duce nutritionally rich grains that support dietary re-
quirement of humans. This approach has proved to
be sustainable, relatively low cost, highly efficacious
and large coverage (Poletti et al, 2004). One of the
biological means to mitigate micronutrient deficiency
is by exploiting naturally occurring mycorrhizal sym-
biosis. Arbuscular mycorrhizal fungal (AMF) associa-
tion is known to facilitate uptake of slowly diffusing
nutrient ions such as phosphorus, zinc and copper
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by the external mycelium (Li et al, 1991; Sylvia et al,
1993; Subramanian and Charest, 1995; Subramanian
et al, 2008; 2009). Besides hyphal transport of Zn,
mycorrhizal symbiosis orchestrates soil biochemical
changes such as increased phosphatase (Tarafdar
and Marschner, 1994; Kim et al, 1998; Kandeler et al,
2002) and dehydrogenase (Wamberg et al, 2003) ac-
tivities, enhanced biomass carbon contents (Hamel
et al, 1991; Kim et al, 1998) and secretion of a unique
glycoprotein ‘‘glomalin” by the hyphae (Wright and
Upadhyaya, 1998) in the rhizosphere that may as-
sist in promoting availability of Zn. The micronutrient
improvement in mycorrhizal plants is always associ-
ated with rhizosphere acidification (Dodd et al, 1987),
more external mycelium in the soil (Jakobsen et al,
1992) and soil biochemical changes (Subramanian
and Charest, 2007). Besides, host plants retain the
large green leaf area (Subramanian et al, 1997) and
chlorophyll concentration (Subramanian and Charest,
1995; Augé, 2001) under the water deficit conditions.

Habashy and Abo-Zide (2005) showed that the
availability of micronutrients (Fe, Mn, and Zn) was
positively affected by inoculation with AM fungi when
compared to the uninoculated treatments. DTPA ex-
tractable Fe and Mn were slightly affected by AM fun-
gi inoculation than that uninoculated one. In addition,
the DTPA extractable Zn was also increased in the
soil treated with AM. In the presence of mycorrhizal
fungi, a decrease in Fe concentration was observed
in soybean (Pacovsky and Fuller, 1988), whereas for
maize an increase of shoot Fe concentration was de-
scribed (Clark and Zeto, 1996) and total Fe uptake
by soybean and maize was increased in mycorrhizal
plants (Lambert et al, 1979). Caris et al (1998) report-
ed that the Fe concentration in shoots and were sig-
nificantly higher in mycorrhizal than non-mycorrhizal
sorghum plants. This study hypothesizes that AMF
colonization acidifies the rhizosphere that assists in
improving the availability of Fe and Zn. Further, root
architecture modifications may facilitate uptake of
micronutrients which eventually resulted in biofortifi-
cation of maize kernels.

Materials and Methods

Experimental soil

Field experiments were conducted in two loca-
tions one each at the Experimental Farms of Agri-
cultural Research Station (ARS), Bhavanisagar and
Tamil Nadu Agricultural University (TNAU), Coim-
batore, under natural conditions. The details of soil
characteristics are given in Table 1. Briefly, the ARS
soil had red sandy loam texture, neutral pH, free from
salinity and low in organic status and low, medium
and high in available N, P and K, respectively. The
TNAU soil had clay loam texture, alkaline pH, and low
in available N and medium in available P and K, re-
spectively. The indigenous mycorrhizal fungal spore
populations in ARS and TNAU soils were 21 and 8
100 g, respectively. Since the native inoculums load
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was low, no attempt was made to fumigate the soil
before field tests.

Field experiments

Both field experiments had the same set of treat-
ments. Treatments consisted of two levels of FeSO,
(12.5 and 25 kg ha) and two levels of ZnSO, (12.5
and 25 kg ha™) in the presence or absence of arbus-
cular mycorrhizal fungal (M+ and M-) inoculation.
There were eight treatment combinations replicated
four times in a factorial randomized block design
(FRBD). The AMF inoculum carrying Glomus intrara-
dices (2 g) was applied at the base of the seed hole
just prior to sowing. Vermiculite based mycorrhizal
inoculum (Glomus intraradices TNAU-11-08) used in
this study was provided by the Department of Micro-
biology of this University. This strain was cultured in
maize plants and propagules comprised of infected
root bits and spores were blended in sterile vermicu-
lite. Maize hybrid seeds (COMH-5) were sown on the
inoculum layer of soil. Germination percentage was
nearly 95% on the seventh day of sowing. Half the
dose of N (75 kg ha™) and full dose of P (75 kg ha™)
and K (75 kg ha") were applied in the form of urea,
single superphosphate and muriate of potash, re-
spectively, as basal at the time of sowing. In addition,
two levels of Fe as FeSO, and Zn as ZnSO, were ap-
plied as per treatment. In the two sets of experiments,
root colonization, soil available micronutrients, sid-
erophore concentration, plant micronutrient status,
physiologically active Fe and grain Fe and Zn besides
phytic acid was measured.

Mycorrhizal colonization

Maize plant roots sampled from M+ and M- treat-
ments were analyzed for their mycorrhizal coloniza-
tion at 45 DAS. The roots were uprooted along with a
ball of earth without disturbing the neighboring plants
by a spade. The roots were repeatedly washed with
tap water until they are free from dirt and soil particles.
The root segments of 1 cm length in 100 numbers
were cut per treatment, and estimated for mycorrhizal
colonization following Dalpé (1993). Before mounting
the root segments on slides, they were bleached with
2.5% KOH, acidified in 1% HCI and stained in 0.05%
tryphan blue solution (tryphan blue 0.5 g, glycerol
500 ml, 1% HCI 50 ml and distilled water 450 ml) and
destained. Root segments were observed under the

Table 1 - Initial soil characteristics of the calcareous and
non-calcareous soils

Parameter Calcareous Non-calcareous

Soil Texture Clay Loam Sandy Loam
pH 8.39 7.20
EC (dSm") 0.45 0.04
Organic carbon (%) 0.42 0.26
Available N (kg ha") 186.2 226.2
Available P (kg ha'") 16.6 19.6
Available K (kg ha'') 412.4 258.4
DTPAZn (mg g7) 0.61 0.93
DTPA Fe (mg ) 1.67 36.2

Spore Count (Nos 100g") 8 21
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Table 2 - Percentage of mycorrhizal colonization examined in the arbuscular mycorrhiza inoculated (M+) and non-inocu-
lated (M-) root segments (n=100) of maize plants at 45 and 75 days after sowing (DAS) under varying Fe and Zn levels.

Treatments Calcareous Non-calcareous
Sterilized Natural Sterilized Natural
45 DAS 75 DAS 45 DAS 75 DAS 45 DAS 75 DAS 45 DAS 75 DAS

M- M+ M- M+ M- M+ M- M+ M- M+ M- M+ M- M+ M- M+
Fe,s 2Ny, 18¢ 314c 45c 394b 88e 337c 116c 464b 21d 3750 2.8 397a 114e 404cb 154c  55.7b
Fe,, Zn,,, 22 338 32d 386b 82 353b 11.6c 4580 26d 30.0c 29c 46.2a 10.7e 424b 15.1c 55.0ba
Fe,s 2, 34d 356b 27d 46.7a 109d 37.6b 10.8c 50.3a 2.0d 375b 24c  484a 142d 451b 143c 60.4a
Fe,,  Zn, 20e 4052 24d 475a 115d 422a 92d 481a 28d 40.0a 30c 44.1ba 149d 506a 12.6c 57.7a
Mean 2.4 35.3 3.2 431 9.9 37.2 108 477 2.4 36.3 2.8 44.6 128 446 144 572
ANQOVA: M (Mycorrhizal inoculation), F (Fe levels), Z (Zn levels)
M *x *x *x *x *x *x *x *x
F . . *x * *k *x *x .
n *x ** *x ** * " *x *x
MxF ** * * NS * NS * NS
FxZ * * * NS NS NS * NS
MxZ * * * * NS NS * *
MxFxZ NS * NS * NS NS NS *

*P < 0.05; **P < 0.01; NS = Not significant

10 x lens microscope for the presence of any of the
mycorrhizal structures such as arbuscules, vesicles,
external hyphae and spores.

Physiologically active iron (Fe?*)

Fresh leaves (100 mg) sampled at 45 and 75 days
after sowing were washed in dH,O, air dried and in-
cubated in 1.5% 1-10 orthophenanthroline solution
for 16 h with continuous stirring at 25 + 1°C. The
contents were filtered through Whatman No 1 filter
paper and the absorbance of the resulting solution
was read at 510 nm (Katyal and Sharma, 1980). A
standard curve for iron was prepared using varying
concentrations of ferrous ammonium sulfate ranging
from 5 to 150 pg ml.

Micronutrient concentrations in grains

One g of powdered plant samples (roots, shoots)
or 0.5 g grain samples were mixed with 12 ml triple
acid (HNO,, H,SO, and HCIO, in 9:2:1) mixture and
kept overnight for cold digestion. The digested sam-
ples were kept on a sand bath till the samples be-
come colourless. The digested samples were diluted

up to 50 ml using dH,0 and were stored for further
nutrients analysis. The Fe and Zn concentrations
were determined by a standard protocol described
by Lindsay and Norwell (1956). The diluted samples
were fed to an Atomic Absorption Spectrometer (Var-
ian Spectra AA 220, Australia) to determine Fe and
Zn concentrations. Blanks were maintained without
adding sample.

Estimation of phytic acid

Phytic acid was estimated by the method of Da-
vies and Reid (1979). One g of material was ground
and extracted with HNO, by continuous shaking, fil-
tered and made up to suitable volume with water. To
1.4 ml of the filtrate, 1 ml of ferric ammonium sul-
phate (21.6 mg in 100 ml water) was added, mixed
and placed in a boiling water bath for 20 min. The
contents were cooled and 5 ml of isoamyl alcohol
was added and mixed. To this, 0.1 ml ammonia solu-
tion was added, shaken thoroughly and centrifuged
at 3000 rpm for 10 min. The alcoholic layer was sep-
arated and the colour intensity was read at 465 nm

Table 3 - Available zinc (Zn) and iron (Fe) (mg kg') concentrations examined in the soils of arbuscular mycorrhi-

za inoculated (M+) and non-inoculated (M-) soils

at 45 days after sowing (DAS) under varying Fe and Zn levels.

Treatments DTPA Zn (mg kg') DTPA Fe (mg kg™')
Calcareous Non calcareous Calcareous Non calcareous
Sterilized Natural Sterilized Natural Sterilized Natural Sterilized Natural
M- M+ M- M+ M- M+ M- M+ M- M+ M- M+ M- M+ M- M+
Fe,s 2N, 091d 1.00c 1.10c 1.30b 1.10d 1.20c 1.33d 1.64b 1.02d 1.20b 1.12c 1.27b 35.0dc 42.6b 42.2d 50.6b
Fep  Zn,,5 093d 1.02c 113¢c 130b 1.12d 1.32b 137d 1.65b 1.13cb 1.32a 1.27b 142a 36.7c 483a 444c 558a
Fe,,; Zn, 1.04b 1172 1.25b 1.49a 1.17¢c 139 1384 1.82a 1.02d 1.17b 1.14c 127b 352dc 42.6b 425d 50.3b
Fe,, Zn, 1050 1.19a 1.27b 1542 1.22c 149a 149c 1.85a 1.15b 1.37a 1.29b 147a 394c 51.9a 47.6¢cb 59.2a
Mean 0.98 1.10 118 1.40 115 1.35 1.39 1.74 1.07 1.26 1.20 1.35 36.6  46.3 441 53.9
ANOVA: M (Mycorrhizal inoculation), F (Fe levels), Z (Zn levels)
CD(0.05)
M *x *k *k *x *x *k *x *x
F *x *k *k *k ** *k * *x
7n * * *k *k *x *k *k *
MxF * * * * *x * * *
FxZ * *k * *k *x * * *
MxZ * * * * * * * *
MxFxZ * * * * * NS * *x

*P < 0.05; **P < 0.01; NS = Not significant
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Table 4 - Siderophores (umol cm h'') concentration in the arbuscular mycorrhiza inoculated (M+) and non-inoculated (M-)
maize plants at 45 and 75 days after sowing (DAS) under varying Fe and Zn levels.

Treatments Calcareous Non calcareous
Sterilized Natural Sterilized Natural
45 DAS 75 DAS 45 DAS 75 DAS 45 DAS 75 DAS 45 DAS 75 DAS

M- M+ M- M+ M- M+ M- M+ M- M+ M- M+ M- M+ M- M+
Fe,s 2Ny, 40.6b 47.8a 412b 517a 46.1c 583a 46.8b 63.1a 134c 224a 13.6ba 20.3a 152c 27.3a 154b 24.8a
Fe,, Zn,,, 38.4ch 46.2a 383b 50.7a 436c 56.4a 435b 619a 11.8¢ 20.2a 125b 1952 134c 246a 14.2b 23.8a
Fe,s 2, 36.4c 43.1b  40.0b 51.4a 414dc 52.6a 454b 627a 115¢c 17.1b  10.8b 17.1a 13.1c  209b 123b 20.9a
Fe,,  Zn, 345c 4180 37.00 498a 39.2d 51.0b 421b 60.8a 10.8¢c 164b 9.8  153b 123c 20.0b 11.1c 18.7ba
Mean 375 447 3941 509 426 546 445 621 11.9 19.0 1.7 18.1 135 232 133 221
ANQOVA: M (Mycorrhizal inoculation), F (Fe levels), Z (Zn levels)
M *x *x *x *x *x *x *x *x
F *k . . . *k " *x *
n " P * P * " * *
MxF * * * * * NS * NS
FxZ NS * * * * NS NS NS
MxZ NS NS NS NS NS NS NS NS
MxFxZ NS NS * * NS NS NS NS

*P < 0.05; **P < 0.01; NS = Not significant

against amyl alcohol blank after 15 min. Sodium phy-
tate standards were run along with the sample. The
results were expressed as mg phytic acid g dry wt.

Soil available micronutrient status

Soil available Fe and Zn was extracted by mixing
10 g of soil sample with 20 ml DTPA extractant (13.1
ml triethanolamine, 1.967 g DTPA, and 1.47 g CaCl,
mixed together, made up to 1 | and adjusted to pH
7.3) for 2 h and filtered through Whatman# 42 filter
paper, and the absorbance was read in an atomic ab-
sorption spectrophotometer (Spectra AA220, Varian).
The Fe and Zn concentrations were determined by a
standard protocol described by Lindsay and Norwell
(1978).

Statistical analysis

A two-way analysis of variance (ANOVA) was
done for all data set and the entire set of data had ful-
filled the assumptions of ANOVA. None of the tables
had required transformations of the data before car-
rying out ANOVA. The data collected from the field
sites (Coimbatore and Bhavanisagar) were analyzed

separately. Despite the fact that the experimental de-
sign had only three replications, care was taken to
record the observations from 5 plants in each rep-
lication. Mean Comparison test (Duncan’s Multiple
Range Test, DMRT) was done for the significantl val-
ues at p < 0.05. Statistical procedures were carried
out with the software package IRRI stat (IRRI, Manila,
Philippines).

Results and Discussion

Mycorrhizal colonization

The experiments were undertaken in order to
study the effect of mycorrhizal inoculation on im-
proving the availability of micronutrients (Fe and Zn),
enhancing the host plant nutritional status which in
thus fortification of micronutrients in grain which cir-
cumventing phytic acid “anti-nutritional” factors. The
data on soil, plant and mycorrhizal parameters have
taken statistically analyzed and the results obtained
are critically discussed. Arbuscular mycorrhizal fun-
gal (M+) inoculation significantly (P < 0.01) increased
the mycorrhizal colonization of maize plants grown

Table 5 - Physiologically active iron (mg kg™ of tissue) in the arbuscular mycorrhiza inoculated (M+) and non-inoculated (M-)
maize plants at 45 and 75 days after sowing (DAS) under varying Fe and Zn levels.

Treatments Calcareous Non calcareous
Sterilized Natural Sterilized Natural
45 DAS 75 DAS 45 DAS 75 DAS 45 DAS 75 DAS 45 DAS 75 DAS

M- M+ M- M+ M- M+ M- M+ M- M+ M- M+ M- M+ M- M+
Fe,,s In,,, 296b 7.63a 490b 10.3a 7.17b 10.8a 9.49p 125b 11.1d 21.0b 16.5ch 20.9b 16.2c 22.4b 24.7c  32.6b
Fe,, Zn,,, 3850 899a 6.64b 132a 842ba 127a 115b 16.6a 14.0c 239a 188b 243a 217b 31.2a 333b 38.1a
Fe,,s Zn, 344b 7.26a 475b 112a 584b 10.2a 9.28b 128b 129c 20.0b 15.7cb 22.8ba 154c 21.7b 32.1b 35.6ba
Fe,,  Zn, 373 868a 6350 120a 7.25b 122a 111b 158a 145c 247a 195b 26.8a 20.2b 304a 30.2b 41.9a
Mean 3.50 8.14 5.66 11.7 747 115 104 14.4 13.1 224 17.6 23.7 18.4 26.4 30.1 37.1
ANOVA: M (Mycorrhizal inoculation), F (Fe levels), Z (Zn levels)
M *k *x ** *x *k *k ok **
F *k *k *k *k *k *k *k *x
7n *k *x *x * *k *k *x *
MxF NS * * NS * * NS NS
FxZ NS NS * NS * NS * NS
MxZ NS * * NS NS NS NS *
MxFxZ NS NS NS NS NS NS NS NS

*P < 0.05; **P < 0.01; NS = Not significant
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Figure 1 - Iron concentration of grain (mg kg") of arbuscular mycorrhizal fungus inoculated (AM+) and uninoculated (AM-) maize
plants under two levels of FeSO4 (12.5 and 25 kg ha") and two levels of ZnSO, (12.5 and 25 kg ha™) in calcareous (A) and
natural soils (B) and non-calcareous sterilized (C) and natural soils (D). Error bars represent standard errors of four replications.

under sterilized or unsterilized conditions of both
calcareous and non-calcareous soils (Table 2). How-
ever, natural soils had the mycorrhizal colonization in
the range of 37-48% and 45-57%, in calcareous and
non-calcareous soils, respectively. Iron and zinc ap-
plication had a little effect on root colonization under
sterilized or unsterilized conditions in both calcare-
ous and non-calcareous soils. The sterilization of the
experimental soils eliminated indigenous mycorrhizal
population which resulted in less than 5% of the root
segments exhibiting mycorrhizal colonization. The
data are in conformity with the observations of Wang
et al (2008) who have reported no colonization in cit-
rus plants grown in sterilized soils. Further, addition
of both Fe and Zn singly or in combination improved
the percentage of mycorrhizal fungal colonization re-
gardless of calcareous or non-calcareous soils. Zinc
fertilization is known to promote the production of
highly branched fibrous roots of maize that facilitate
mycorrhizal colonization. Subramanian et al (2008)
have shown that Zn fertilization improved the root
biomass of both mycorrhizal and non-mycorrhizal
maize plants but the response was more pronounced
for M+ plants. Since the experimental soils of both lo-
cations were deficient in Zn (less than 1 mg kg™), the
fertilization would have helped in alleviating Zn de-
ficiency besides promoting root growth. Further, Fe
fertilization has shown to improve colonization of Glo-
mus versiforme in citrus plants. These data suggest

that micronutrient fertilization assists root growth and
mycorrhizal colonization.

Soil available micronutrient status

The available (DTPA extractable) Zn and Fe con-
centrations in M+ soils were significantly (P < 0.01)
higher than M- soils in both calcareous and non-cal-
careous regardless of sterilized or natural conditions
(Table 3). The available Fe concentrations of both M+
and M- soils had 30-40 times lower values in cal-
careous soils in comparison to non-calcareous soils
suggesting that there is a strong inhibitory effect of
free lime status on the availability of Fe. A negative
correlation between lime status and available Fe has
already been well established (Zuo et al, 2007). The
data clearly indicated that the introduced AMF spe-
cies Glomus intraradices inoculation had consistent
effects on availability of micronutrients in soil regard-
less of free lime status of soils. Subramanian et al
(2009) have shown that the mycorrhizal colonization
facilitates acidification of rhizosphere, solubilization
of tightly bound residual form of zinc besides hyphal
transport of metallic micronutrients collectively con-
tribute for the availability. Rhizosphere of mycorrhiza
colonized citrus plants assists in acidification and
increased the root ferric chelate reductase activity
in combination with hyphal transport helped the ac-
quisition by the host plant. Our study in conjunction
with reported literature are in conformity with the ob-
servations of earlier reports (Koide and Kabir, 2000;
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Figure 2 - Zinc concentration of grain (mg kg™) of arbuscular mycorrhizal fungus inoculated (AMF+) and uninoculated (AMF-)
maize plants under two levels of FeSO, (12.5 and 25 kg ha) and two levels of ZnSO, (12.5 and 25 kg ha™) in calcareous steril-
ized (A) and natural soils (B) and non-calcareous sterilized (C) and natural soils (D). Error bars represent standard errors of four

replications.

Subramanian et al, 2008).

Siderophore concentration

Mycorrhizal fungal inoculated roots significantly
produced higher (P < 0.01) siderophore concentra-
tions than non-mycorrhizal roots in both stages of
calcareous and non-calcareous soil (Table 4). With
the progression of plant growth stages on both soils,
M+ soil had higher siderophore production status
while M- soil had consistently lower siderophore pro-
duction under both soil conditions. Mycorrhizal fun-
gus inoculated soil had significantly (P < 0.01) higher
siderophore production in calcareous soil compared
to the non-calcareous soil (calcareous M- 44.5; M+
62.1 pmol cm h™', non-calcareous M- 13.3; M+ 22.1
pmol cm=* h™') conditions.

Mycorrhizal symbiosis enhances the production
of mugenic acids which serve as a chelating agent
that favors availability of micronutrients particularly in
calcareous soils where the availability is very much
restricted. Similar results were reported by Linder-
mann (1992) and he stated that an arbuscular mycor-
rhizal grass species, which showed greater Fe uptake
than non-mycorrhizal controls, tested positively when
bioassayed for hydroxymate siderophores (Hasel-
wandter, 1995). Even higher siderophore concentra-
tions may be reached in microenvironments such
as biofilms, unless pH depression and/or anaerobic
conditions in the microenvironment increase the

solubility of iron, depressing siderophore production.
Siderophores facilitate Fe uptake to both microbial
flora and higher plants. Ericoid mycorrhizal fungi pro-
duce siderophore (Landeweert et al, 2001; Howard,
2004). Ericoid mycorrhizal fungi release ferricrocin
or fusigen as the main siderophores. Ferricrocin was
also shown to be produced by the ectomycorrhizal
fungi Cenococcum geophilum and Hebeloma crus-
tuliniforme.

Arbuscular mycorrhizal fungi are reported to en-
hance Fe-uptake rates of associated host plants,
which can be taken as an indication that mycorrhizal
siderophores of a yet unknown structure may be in-
volved (Haselwandter, 2008). Enhancement of sider-
ophores and/or phytosiderophores per unit volume of
root in mycorrhizal plants suggests that mycorrhizal
fungi may secrete siderophore by themselves and/or
induce plant root to produce more phytosiderophore
(Aliasgharzad et al, 2009).

Active Fe content

Mycorrhizal plants had significantly (P < 0.01)
higher physiologically active Fe concentrations than
non-mycorrhizal plants at both 45 and 75 DAS in
calcareous and non-calcareous soils (Table 5). The
physiologically active Fe content in plants appears to
play a vital role in chlorophyll synthesis. In this study,
a strong correlation between physiologically active Fe
and chlorophyll concentration has been established
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Figure 3 - Phytate concentration of grain (mg g') of arbuscular mycorrhizal fungus inoculated (AMF+) and uninoculated (AMF-)
maize plants under two levels of FeSO, (12.5 and 25 kg ha) and two levels of ZnSO, (12.5 and 25 kg ha™) in calcareous steril-
ized (A) and natural soils (B) and non-calcareous sterilized (C) and natural soils (D). Error bars represent standard errors of four

replications.

(Table 5) (Calcareous soil r? = 0.76; Non-calcareous
soil r2 = 0.873). Our data are in agreement with the
observations Zou at al (2000) who have reported a
strong correlation between active Fe and chlorophyll
concentrations. Chlorophyll synthesis in the plants is
directly related to the availability of the physiologi-
cally active Fe and micronutrients in plants available
form (Suresh Kumar et al, 2011). Fe nutrition in plants,
the concentration of active iron in leaves is recog-
nized as a better nutritional iron indicator than total
iron and has been also suggested by Scholl (1979),
Dekock (1979), Katyal and Sharma (1980), and Men-
gel et al (1984). Higher Fe concentrations in grains of
M+ plants may be attributed to the hyphal transport
of Fe and besides improved plant available Fe that
may have supported Fe nutrition of maize plants and
fortification of grains (Caris et al, 1998). In addition
to the hyphal transport, mycorrhizal fungi produce Fe
siderophores that may favour chelation and availabil-
ity of Fe.

Iron and zinc concentrations in grains

M+ maize plants produced grains with significant-
ly higher Fe concentrations under sterilized and natu-
ral soils conditions regardless of lime status. Grain Fe
concentrations of M+ were nearly doubled and con-
sistently higher than M- under calcareous (Figure 1A-
1D) (M- 37.6; M+ 51.8 mg kg™) and non-calcareous
(M- 48.4; 55.5 mg kg™ soils under natural conditions

in comparison to sterilized calcareous (M- 21.7; M+
29.0 mg kg') and non-calcareous (M- 23.6; M+ 35.2
mg kg™). Similarly, Zn concentrations (Figure 2A-2D)
of maize grains were significantly higher for mycorrhi-
zal treatments in both calcareous (36.3 mg kg™) and
non-calcareous (39.7 mg kg') soils than M- treat-
ments (Calcareous 22.6; non-calcareous 27.2 mg
kg™). Our data clearly demonstrated that mycorrhi-
zas improve Fe concentrations of maize irrespective
of soil conditions. The data have shown that mycor-
rhizal symbiosis has a potential to enhance grain Zn
concentrations to the tune of 13-15 mg per kg grains.
Such response has already been reported earlier. Our
earlier experimental data have shown improved Zn
concentrations in maize grains as a result of hyphal
transport, acidification of rhizosphere and synergistic
interaction with P (Subramanian et al, 2008; 2009).

Phytic acid concentrations

Mycorrhiza inoculated plants produced grains
with significantly (P < 0.01) lower phytic acid concen-
trations than M- plants in both calcareous (Figure 3A-
3D) and non-calcareous soils. The phytic acid con-
centrations in M+ grains in calcareous soil were 1.12
and 1.07 mg g which were 5-6% and 5-7.5% lower
in sterilized and natural soils, respectively, in com-
parison to M- grains (sterilized 1.10; natural 1.05 mg
g™). Similar trends were observed in non-calcareous
soils but the values were lower than calcareous soils.
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Figure 4 - Correlations between available micronutrients (Fe and Zn) and P of the arbuscular mycorrhiza inoculated (M+) and

non- inoculated soils.

There is no reported literature to support that mycor-
rhizal symbiosis has a potential to decrease phytic
acid concentrations. But, indirectly, mycorrhizas are
well known to promote the availability of Zn is soils as
well as in grains which is widely considered as an in-
hibitory factor. Akay and Ertas (2008) have indicated
that the chickpea genotypes rich in Zn have a nega-
tive correlation with phytic acid concentrations. Simi-
lar observation has made by Ryan et al (2008). Our
present study has clearly shown an increase in grain
Zn which may have suppressed the phytic acid con-
centrations. A strong negative correlation between
grain Zn concentrations and phytic acid content has
been established (Kaya et al, 2009). Since mycorrhi-
zal symbiosis facilitates accumulation of Zn concen-
trations in grains which may suppress the phytic acid
content.

Conclusion

Overall, the four sets of greenhouse and field ex-
perimental data unequivocally demonstrated that my-
corrhizal symbiosis facilitates the availability of both
Fe and Zn. The synergistic interaction between these
two nutrients may assist in enhanced uptake of iron
and zinc which eventually gets remobilized into de-
veloping grains. Since mycorrhizal fungal inoculation
is one of the potential factors assist in biofortification
kernels with minerals besides circumventing the im-
pact of anti-nutritional factors. Mycorrhizal symbiosis
is a potential factor to be considered to achieve nutri-

tional security in the context of severity of micronutri-
ent deficiencies in arid and semi-arid regions.
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