

Boosting the effectiveness of nicosulfuron-atrazine-propisochlor with adjuvants for weed management in maize

Tasawer Abbas^{1*}, Muhammad Ather Nadeem¹, Amar Matloob², Bilal Ahmad Khan¹⁻³, Muhammad Zia Ul Haq⁴, Javid Gherekhloo⁵, Shahwar Ibne Aslam¹, Naila Farooq⁶

1 Department of Agronomy, College of Agriculture, University of Sargodha, Sargodha, 40100, Pakistan

2 Department of Climate Change, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan

3 Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas -77843, USA

4 Department of Agronomy, University of Agriculture, Faisalabad, Punjab-Pakistan

5 Department of Agronomy, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

6 Department of Soil and Environmental Sciences, College of Agriculture, University of Sargodha, Sargodha, Pakistan

*Corresponding author: E-mail: tagondaluaf@gmail.com

Keywords: Maize, weeds, adjuvants, alkyl ether sulphate sodium salt, broad spectrum herbicide, herbicide pollution, herbicide resistance

Abstract

Adjuvants are critical in enhancing herbicide efficacy, resulting in reduced herbicide application cost, less environmental pollution, and more sustainable weed management. To check the role of adjuvants (alkyl ether sulphate sodium salt, rapsoel methyl ester, fatty alcohol ethoxylate, and ammonium sulphate) in improving the efficacy of nicosulfuron-atrazine-propisochlor (NAP), a repeated warehouse experiment was conducted to optimize the NAP at 100% and 75% of the recommended label dose and adjuvants combinations against five different types of weeds and maize plants. NAP at a reduced dose (75% label dose) plus rapsoel methylester at 400 ml ha⁻¹ provided 100% and 97% control of *Trianthema portulacastrum* and *Dactyloctenium aegyptium*. While NAP at reduced dose plus alkyl ether sulphate sodium salt 400 ml ha⁻¹ provided 91%, 86%, and 87% control of *Amaranthus viridis*, *Echinochloa colona* and *Cyperus rotundus*, respectively. The addition of adjuvants did not cause any phytotoxic effect on maize growth and grain yield. All tested adjuvants enhanced the NAP efficacy, however, change in efficacy depended on the adjuvant added and the type of weed species. Hence, tested adjuvants can be used to reduce herbicide doses up to 25%, representing a promising strategy to reduce herbicide input to cope with increasing herbicide-resistance development and environmental pollution to ensure sustainable weed control in maize.

Abbreviations

AHAS: acetohydroxyacid synthase

HSD: honestly significant difference

ALS: acetolactate synthase

NAP: nicosulfuron-atrazine-propisochlor

EO: ethyl oxide

WCE: weed control efficiency

Introduction

Maize (*Zea mays* L.) is a staple food, exerting cultural, economic, environmental, and nutritional influences worldwide. Beyond its role as a major crop for global food security, maize has demand for use in animal feed and ethanol production for biofuel (Tanumihardjo et al., 2020). Global maize production is continuously increasing due to increasing demand and supported by technological advances, enhanced yields, and expanded cultivation areas. Maize currently holds the top position among cereals in terms of production volume and the most widely cultivated and traded crop in the

next decade (Erenstein et al., 2022).

Weeds cause severe yield losses in maize, vary depending on weed infestation duration, density and type of weeds, uncontrolled weed can cause up to 100% yield (Abbas et al., 2017a; Chauhan, 2020). Weeds are more aggressive and versatile than crop plants and hence are found in large numbers in diverse environmental conditions (Abbas et al., 2025). Their large adaptability enables them to grow in multiple flushes and survive under extreme of climate, ecological and biotic stresses (Abbas et al., 2025). Hence, the use of post-emergence

herbicides has increased (Radheshyam et al., 2021). Instead of various non-chemical weed control strategies introduced in recent years, the chemical weed control is still the most commonly used control option (Abbas et al., 2024; Abbas et al., 2025), that is facing various challenges associated with resistance development in weeds and environmental pollution hazards (Abbas et al., 2017b; Matloob et al., 2020). Indiscriminate use of herbicides causing problems such as water and environment pollution, herbicide resistance development in weeds, herbicide hormesis, higher cost for weed control and observed residual/toxic effects of herbicide on soil fertility and productivity (Abbas et al., 2017b; Nadeem et al., 2017b). Use of herbicide at reduced dose can be done under specific situations as it will increase net income for farmers, reduce potential phytotoxic effects and damage to current and succeeding susceptible crops, and minimize risk to degrade the environment (Duke, 2020). One of the most important strategies to cope with these challenges is the facilitation of reduced herbicide input (Buncek et al., 2020; (Abbas et al., 2025).

The incorporation of adjuvants with herbicides as tank mixtures is a potential method to reduce herbicide input, thereby reducing herbicide selection pressure without compromising weed control efficacy. This strategy is effective against herbicide-resistant weeds, serving both to enhance their control and to reduce resistance development (Palma-Bautista et al., 2020). Adjuvants enhanced herbicide efficacy by increasing plant surface wettability and herbicide absorption on the plant surface and then into their cells (Akhter et al., 2017). Adjuvants help: i) to increase the foliar activity of herbicide and decrease the surface tension of the droplets, due to which herbicide retention on leaves increase (Pacanoski et al., 2015), ii) to improve the plant surface retention and for penetration of the plant cuticles (Mirgorodskaya et al., 2020), to reduce the herbicide dose by 10-25% in maize fields (Nadeem et al., 2016). Different pre-emergence and post-emergence herbicides have been widely used for control of weeds in maize (Nadeem et al., 2016; Radheshyam et al., 2021). Herbicide mixtures are gaining importance due to their role in widening the weed control spectrum, enhancing efficacy, and reducing herbicide selection pressure to manage herbicide resistance (Barbieri et al., 2023). Considering the role of herbicides mixtures in maize weed control, a pre-mixed herbicide nicosulfuron-atrazine-propisochlor has been recently introduced. Nicosulfuron is rapidly absorbed through the plant leaves and then translocated by the both xylem and phloem. It inhibits the normal functioning of an enzyme called acetolactate synthase (ALS), also called

acetohydroxyacid synthase (AHAS), having a key role in the biosynthesis of the branched-chain amino acids isoleucine, leucine, and valine and it is effective against major annual broadleaf weeds with minimum effect on grasses (Bagale et al., 2023). Atrazine is a member of the triazine group, which is highly effective against broadleaf weeds (Sardrood and Goltapeh, 2018). Propisochlor belongs to the chloroacetanilide group, which is a selective herbicide absorbed by shoots in germinating plants, it inhibits protein synthesis and cell division. It is very effective to control annual grasses and broadleaf weeds in maize (Xie et al., 2018).

Trianthema portulacastrum, *Amaranthus viridis*, *Dactyloctenium aegyptium*, *Echinochloa colona* and *Cyperus rotundus* are major maize weeds (Rashid et al., 2020). Managing these weeds has become complicated and challenging due to the development of herbicide resistance and its associated environmental pollution concerns. Therefore, a repeated wirehouse study was conducted to evaluate the comparative performance of adjuvants to reduce herbicide and find out the best adjuvant for novel herbicide mixture (nicosulfuron-atrazine-propisochlor) to control broad leaved (*T. portulacastrum* and *A. viridis*), narrow leaved (*D. aegyptium* and *E. colona*) and sedge (*C. rotundus*) in maize.

Materials and methods

Experimental materials and cultivation conditions

The experiments were conducted in the glasshouse of the College of Agriculture, University of Sargodha, located at 32.13 °N, 72.68 °E and 193 m altitude in 2022, and 2023 seasons. Weed seeds were collected from maize field a year before sowing (respectively, 2021 and 2022) and kept at room temperature. Seeds of broad leaved, narrow leaved, sedge, and maize commercial hybrid DK-919 were sown in glasshouse potting soil in 46 × 39 cm trays. Fifteen seeds of each weed type and maize were planted in the potting soil, seeded pots were placed in a glasshouse and watered with tap water. After the germination, weed and maize plants were thinned to 12 plants per tray to take a uniform stand. Water was applied as needed till the maturity. The glasshouse temperature was maintained between 25-30°C. Plants were monitored regularly to assess growth and any signs of abiotic stress. The experiment continued until both the maize and weed plants reached maturity.

Herbicide treatments

Treatments were applied when maize plants were at the 3 to 4-leaf growth stage and weeds were at the 3-5 leaf growth stage. Herbicide mixture of nicosulfuron-atra-

Table 1 - Effect of herbicide alone and in combination with different adjuvants on weed density and WCE of different weeds (pooled data from repeated experiments).

Treatments	Weed density (WCE)				
	<i>Trianthema portulacastrum</i>	<i>Amaranthus viridis</i>	<i>Dactyloctenium aegyptium</i>	<i>Echinochloa colona</i>	<i>Cyperus rotundus</i>
T₀	12 a	12a	12 a	12 a	12 a
T₁	0.00 e (100%)	0.00 h (100%)	0.32 f (97%)	0.00 g (100)	1.2 f (90%)
T₂	4 b (67%)	4.12 b (66%)	3.50 b (71%)	4.7 b (61%)	4.5 b (63%)
T₃	0.14 e (99%)	1.12 g (91%)	0.53 f (96%)	1.67 f (86%)	1.52 f (87%)
T₄	0.00 e (100%)	1.8 f (85%)	0.41 f (97%)	2.21 e (82%)e	1.92 e (84%)
T₅	0.66 d (95%)	2.09 f (83%)	1.7 d (86%)	2.29 e (81%)	2.04 e (83%)
T₆	1.00 c (92%)	3.7 c (69%)	2.4 c (80%)	3.94 c (67%)	3.1 c (74%)
T₇	0.33 de (97%)	3.2 d (73%)	2.55 c (79%)	3.72 c (69%)c	2.56 d (79%)
T₈	0.00 e (100%)	3.4 cd (72%)	1.67 d (86%)	3.94 b (67%)cd	2.23 de (81%)
T₉	0.00 e (100%)	2.5 e (79%)	1.17 e (90%)	3.21 d (73%)	1.99 e (84%)

T₀: Weedy check, T₁: Nicosulfuron-atrazine-propisochlor @740g a.i. ha⁻¹ (NAP at 100%), T₂ : Nicosulfuron-atrazine-propisochlor @555g a.i. ha⁻¹ (NAP at 75%), T₃: NAP at 75% + alkyl ether sulphate sodium salt @ 400 ml ha⁻¹, T₄ : NAP at 75% + rapsoel methyl ester 400 ml ha⁻¹, T₅: NAP at 75% + fatty alcohol ethoxylate @ 200 ml ha⁻¹, T₆: NAP at 75% + ammonium sulphate (2%), T₇: NAP at 75% + ammonium sulphate (3%), T₈: NAP at 75% + ammonium sulphate (4%), T₉: NAP at 75% + ammonium sulphate (5%). In a column, means sharing different letters statistically vary from one another based on Tukey's HSD test (p < 0.05).

zine-propisochlor (NAP) containing nicosulfuron 2%, atrazine 20% and propisochlor 15% as oil dispersion was used. Adjuvants were mixed with herbicide before application. All herbicide treatments including T₀: Weedy check, T₁: NAP @740g a.i. ha⁻¹ (NAP at 100%), T₂: NAP @ 555g a.i. (active ingredient) ha⁻¹ (NAP at 75%), T₃: NAP at 75% + alkyl ether sulphate sodium salt @ 400 ml ha⁻¹, T₄: NAP at 75% + rapsoel methyl ester 400 ml ha⁻¹, T₅: NAP at 75% + fatty alcohol ethoxylate @ 200 ml ha⁻¹, T₆: NAP at 75% + ammonium sulphate (2%), T₇: NAP at 75% + ammonium sulphate (3%), T₈: NAP at 75% + ammonium sulphate (4%) and T₉: NAP at 75% + ammonium sulphate (5%) were applied as post emergence application. The treatments were sprayed using a CO₂ pressurized back pack sprayer attached with TeeJet 8003VS nozzle at 30 psi pressure set apart 50 cm above plant high that sprayed about 187 L ha⁻¹. All the treatments were replicated four times and arranged in completely randomized design with factorial arrangements of herbicides and adjuvant combinations.

Traits recorded and data collection

Weed Density, the weed count was recorded 14 days after spray from every tray and mean values were expressed as plants per tray. For weed and maize dry matter estimation, weeds from each tray were collected, shade-dried and then dried in oven at 80 oC for 72 hours.

Weed control efficiency (WCE) was calculated as per the formula given below

$$\text{Weed control efficiency (\%)} = \frac{(\text{Weed density in controlled pot} - \text{Weed density in treated pot})}{(\text{Weed density in controlled pot})} \times 100$$

Crop damage was visually estimated 14 days after spray on a scale of 0 (no damage) to 20 (complete desicca-

tion) (Pratt et al., 2003). Maize dry weight, 1000-grain weight and grain yield was calculated using digital electric weighing balance.

Statistical analysis

The experiment was conducted twice using a completely randomized design with four replications. Data from repeated experiments were pooled due to the lack of significant differences among the repetitions. Analysis of variance (ANOVA) was run on the data (Steel et al., 1997). using the computer package Statistix 8.1 (Analytical software, Statistix; Tallahassee, FL, USA, 1985-2003) to test the effect of NAP with adjuvants on weeds and maize plants. Significant main effects are reported in tables. HSD Tukey's test was applied at 5% probability level to test the significance of treatment means.

Results and Discussion

Weed density and WCE (%)

Weed density and WCE varied significantly among the treatments, as shown in Table 1. Adjuvants significantly increased the herbicide efficacy as compared to herbicide application without adjuvants. Among the herbicide treatments, maximum control of *T. portulacastrum* (100%) and *D. aegyptium* (97%) was obtained by NAP @ 555 g a.i. ha⁻¹ with addition of rapsoel methyl ester 400 ml ha⁻¹, it was followed by the NAP @ 555g a.i. ha⁻¹ + alkyl ether sulphate sodium salt @ 400 ml ha⁻¹. For *A. viridis*, *E. colona*, and *C. rotundus* maximum control (91%, 86%, and 87%, respectively) was obtained with the application of NAP @ 555 g a.i. ha⁻¹ + alkyl ether sulphate sodium salt @ 400 ml ha⁻¹ and followed by NAP @ 555 g a.i. ha⁻¹ with addition of rapsoel methyl

Table 2 - Effect of herbicide alone and in combination with different adjuvants on weed dry weight (g pot-1) of different weeds (pooled data from repeated experiments)

Treatments	Weed dry weight (% weight reduction)				
	<i>Trianthema portulacastrum</i>	<i>Amaranthus viridis</i>	<i>Dactyloctenium aegyptium</i>	<i>Echinochloa colona</i>	<i>Cyperus rotundus</i>
T ₀	60 a (0%)	74 a (0%)	52 a (0%)	61 a (0%)	45 a (0%)
T ₁	0 e (100%)	0 e (100%)	2.17 e (96%)	0 d (100%)	2.45 e (82%)
T ₂	36 b (40%)	33 b (55.40%)	37 b (28.8%)	42 b (31.1%)	28 bc (37.7%)
T ₃	18 d (70%)	17 d (77.0%)	27 cd (48.0%)	26 c (57.3%)	19 cd (57.7%)
T ₄	0 e (100%)	16 d (78.3%)	26 d (50%)	28 c (54.0%)	17 d (62.2%)
T ₅	21 d (65%)	19 d (74.3%)	25 d (51.9%)	24 c (60.6%)	20 cd (55.5%)
T ₆	26 c (56.6%)	34 b (54.0%)	32 bcd (38.4%)	31 c (49.1%)	30 b (33.3%)
T ₇	27 c (55%)	31 bc (58.1%)	35 bc (32.6%)	33 bc (45.9%)	25 bcd (44.4%)
T ₈	0 e (100%)	28 c (62.1%)	30 bcd (42.3%)	27 c (55.7%)	27 bc (40%)
T ₉	0 e (100%)	30 bc (59.4%)	29 bcd (44.2%)	29 c (52.4%)	26 bcd (42.2%)

T₀: Weedy check, T₁: Nicosulfuron-atrazine-propisochlor @740g a.i. ha⁻¹ (NAP at 100%), T₂ : Nicosulfuron-atrazine-propisochlor @555g a.i. ha⁻¹ (NAP at 75%), T₃: NAP at 75% + alkyl ether sulphate sodium salt @ 400 ml ha⁻¹, T₄ : NAP at 75% + rapsoel methyl ester 400 ml ha⁻¹, T₅: NAP at 75% + fatty alcohol ethoxylate @ 200 ml ha⁻¹, T₆: NAP at 75% + ammonium sulphate (2%), T₇: NAP at 75% + ammonium sulphate (3%), T₈: NAP at 75% + ammonium sulphate (4%), T₉: NAP at 75% + ammonium sulphate (5%). In a column, means sharing different letters statistically vary from one another based on Tukey's HSD test (p < 0.05).

ester 400 ml ha⁻¹. The application of NAP @ 555g a.i. ha⁻¹ without adjuvant achieved 61-71% weed control efficacy against *T. portulacastrum*, *A. viridis*, *D. aegyptium*, *E. colona* and *C. rotundus*. The addition of adjuvants helped enhance herbicide efficacy to 69-100%.

Weed dry weight

The application of NAP with adjuvants caused significant reduction in weed dry weight, with varied reductions depending on the adjuvant used (Table 2). The application of NAP @ 555g a.i. ha⁻¹ (NAP at 75%) with adjuvants resulted in greater reduction in dry weight of *T. portulacastrum* (55-100%), *A. viridis* (54-78%), *D. aegyptium* (32-52%), *E. colona* (33-52%) and *C. rotundus* (33-62%) compared to treatments without adjuvants (29-55%). For *T. portulacastrum* application of NAP @ 555g a.i. ha⁻¹ with rapsoel methyl ester 400 ml ha⁻¹ caused 100% reduction in dry weight which was statistical at par with recommended dose of herbicide without adjuvant. For other weed species including *A. viridis*, *D. aegyptium* and *C. rotundus* same herbicide adjuvant combination yielded better results. However, for *E. colona* the application of NAP @ 555g a.i. ha⁻¹ plus alkyl ether sulphate sodium salt @ 400 ml ha⁻¹ caused more reduction in weed dry weight as compared to other adjuvants. Overall results revealed that, addition of rapsoel methyl ester and alkyl ether sulphate sodium salt @ 400 ml ha⁻¹ as adjuvant found more effective in reducing weed dry weight as compared to fatty alcohol ethoxylate @ 200 ml ha⁻¹ and ammonium sulphate at 2, 3, 4 and 5%.

Maize damage, growth and yield

Results regarding maize crop damage revealed that

addition of adjuvants including alkyl ether sulphate sodium salt, rapsoel methylester, fatty alcohol ethoxylate and ammonium sulphate with NAP caused non-significant effect on maize damage. Similarly, results about maize dry weight revealed no significant effect of NAP alone or in combination with adjuvant on maize dry weight (Table 3). Cob length, seeds per cob and maize grain weight per plant were also significantly affected by different herbicide adjuvant application. The untreated maize plants in control treatment achieved increased values of the following traits: cob length (18.21 cm), seeds per cob (435.43) and grain yield (83.2 g plant⁻¹). The minimum cob length (17.49 cm), seeds per cob (413.32) and grain yield (74.3 plant⁻¹) were achieved in pots treated with NAP at 75% + ammonium sulphate (5%). The application of herbicide with different adjuvants (alkyl ether sulphate sodium salt, rapsoel methyl ester, fatty alcohol ethoxylate and ammonium sulphate) caused no detrimental impact on cob length, seeds per cob, and grain yield of maize, except for NAP at 75% concentration combined with 4% ammonium sulfate, which led to a reduction in cob length.

It is clear from the above mentioned results that there is a significant increase in weed control potential of NAP with adjuvants in autumn maize, proving better weed control efficacy in comparison to no adjuvant. Herbicide plus adjuvants mixtures did negatively influence the maize growth and yield, except NAP at 75% + ammonium sulphate (5%) application (Table 3). Different adjuvants showed different potential to enhance herbicide efficacy. Different studies support the ideology of herbicide implication along with adjuvants, which increased the weed control percentage as well as lessen the laborious and challenging target to controlling

Table 3 - Effect of herbicide alone and in combination with different adjuvants on crop damage and dry weight of maize (pooled data from repeated experiments).

Treatments	Crop damage	Dry weight (g plant ⁻¹)	Cob length (cm)	Seeds cob ⁻¹	Grain weight (g plant ⁻¹)
T ₀	0 b	7.24 ^{NS}	18.21 a	435.4 a	83.2 a
T ₁	4 a	6.68	18.13	422.5 bcd	79.2 ab
T ₂	4 a	7.20	18.20 a	424.5 bcd	80.3 ab
T ₃	4 a	6.91	18.14 a	422.3 cd	79.2 ab
T ₄	5 a	6.84	18.16 a	420.3 cd	80.1 ab
T ₅	4 a	6.92	18.17 a	429.4 ab	79.0 ab
T ₆	5 a	6.61	18.14 a	426.5 bc	80.7 ab
T ₇	5 a	7.92	18.09 ab	424.2 bcd	81.4 a
T ₈	5 a	6.27	17.94 b	419.2 de	77.0 ab
T ₉	6 a	6.56	17.49 c	413.3 e	74.3 b

T₀: Weedy check, T₁: Nicosulfuron-atrazine-propisochlor @740 g a.i. ha⁻¹ (NAP at 100%), T₂ : Nicosulfuron-atrazine-propisochlor @555g a.i. ha⁻¹ (NAP at 75%), T₃: NAP at 75% + alkyl ether sulphate sodium salt @ 400 ml ha⁻¹, T₄ : NAP at 75% + rapsoel methyl ester 400 ml ha⁻¹, T₅: NAP at 75% + fatty alcohol ethoxylate @ 200 ml ha⁻¹, T₆: NAP at 75% + ammonium sulphate (2%), T₇: NAP at 75% + ammonium sulphate (3%), T₈: NAP at 75% + ammonium sulphate (4%), T₉: NAP at 75% + ammonium sulphate (5%). In a column, means sharing different letters statistically vary from one another on the basis of Tukey's HSD test (p < 0.05).

weeds manually (Nadeem et al., 2016; Ferreira et al., 2020). However, it is a fact that adjuvants combination performs differently when mixed with herbicides so it is a basic need to make selection of a right adjuvant for a perfect combination to gain the positive results when mixed with the herbicide (Idziak et al., 2023; Ferreira et al., 2020).

Surfactants with high ethyl oxide (EO) concentration can enhance cuticle hydration at a given relative humidity level. The enhanced hydration state of the cuticle caused by high EO surfactants increases the diffusion of water-soluble herbicides over the cuticle (Zeisler-Diehl et al., 2022). Thus, surfactants with high EO concentration increase the absorption of hydrophilic herbicides the greatest, whereas surfactants with low EO content aid the absorption of lipophilic herbicides. Surfactant molecules are primarily composed of a lipophilic (hydrophobic) long chain hydrocarbon (alkyl) group and a hydrophilic (lipophobic) polar group. Adjuvants have both lipophilic (oil-loving) and hydrophilic (water-loving) qualities, allowing them to interact with both lipophilic plant surfaces and herbicides, as well as hydrophilic herbs and water (Javaid et al., 2012; Nadeem et al., 2016; Tanveer et al., 2018). Previously, alkyl ether sulphate sodium salt has been successfully used to enhance efficacy of various herbicides against different weed species (Javaid et al., 2012; Tanveer et al., 2018). Furthermore, the addition of rapeseed methyl ester and fatty alcohol ethoxylate as adjuvants increased the efficacy of post-emergence herbicides (sulfosulfuron and mesosulfuron methyl) against wheat weeds (Abbas et al., 2018).

Ammonium sulfate, employed as an adjuvant, has also proved to be effective in overcoming diminished herbi-

cidal action due to opposition with another ingredient in the spray formulation (Travlos et al., 2017). The addition of ammonium sulfate to the herbicide solution neutralized the resistance. In a spray formulation containing calcium and sodium ions, adding ammonium sulfate reduces their influence on herbicide absorption. For example, glyphosate's efficiency can be diminished when mixed with water with a high concentration of calcium ions (Chahal et al., 2012). Calcium ions bond to glyphosate and render the pesticide molecule useless. When ammonium sulfate is introduced to the mixture, the calcium ion bonds to the sulfate ions in it and forms a salt (calcium sulfate), rather than attaching to the herbicide resulting an increased efficacy of glyphosate herbicide (Devkota and Johnson, 2019; Duke, 2020). All mixtures were not the same for every weed, so the selection is always done based on supportive research or experimentation that which herbicide and adjuvant combination suits the most among different conditions, targeting the right sites with increased penetrative ability and active nature resulting increased efficacy for optimum control (Abbas et al., 2018; Duke, 2020).

The findings provide evidence favoring the modern concept of adjuvants usage along with their positive impacts when combined with herbicides in a calculated dosage, increasing herbicide efficacy against different summer weeds. The potential of adjuvants to increase efficacy or reduce herbicide input without compromising weed control efficiency can be potentially used to cope with the increasing challenge of herbicide resistance development. As reduced herbicide input decreases the herbicide selection pressure, which is a desirable factor to avoid the development of resistance development in weeds (Palma-Bautista et al., 2020).

Further, it will also help to reduce the use of chemical pesticides as human health, ecosystem biodiversity, and agriculture sustainability are badly affected by such synthetic chemicals (Abbas et al., 2025). Under challenges possessed by climate change and the increasing issue of herbicide resistance, modern strategies are crucial to ensure the precise use of herbicides with better weed control efficacy (Abbas et al., 2025). More research regarding the study of perfect combinations for adjuvants and herbicides against different weeds in various crops to cope with increasing weed infestation and food security issues. Developing an effective weed control method that sustains agricultural productivity and conserves resources, with a forward-thinking approach capable of revolutionizing the world economically and socially, is the need of the hour.

Conclusions

In conclusion, adjuvants including (alkyl ether sulphate sodium salt, rapsoel methylester, fatty alcohol ethoxylate and ammonium sulphate) can increase the efficacy of NAP to control broad leaved (*T. portulacastrum* and *A. viridis*) narrow leaved (*D. aegyptium* and *E. colona*) and sedge (*C. rotundus*) in maize. Each adjuvant exhibited varying responses depending on the weed species and the type of herbicide used at 75% of its recommended dose. When paired with an adjuvant, the herbicide provided weed control comparable to that achieved with the recommended dose. Addition of adjuvants did not cause detrimental impact on maize growth and yield.

Funding information

Authors state no funding involved.

Author Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by TA and NF. The first draft of the manuscript was written by TA. Review and editing was done by AM, BAK, NF, MAN, SIA, JG and TA. NF contributed as senior author. All authors read, helped to shape research and manuscript, and approved the final manuscript.

Conflict of interest

Authors state no conflict of interest

Data Availability Statement

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request

Acknowledgments

The authors gratefully acknowledge University of Sargodha (UOS), Sargodha, Pakistan for place and research material.

References

Abbas N, Tanveer A, Ahmad T, Amin M, 2018. Use of adjuvants to optimize the activity of two broad-spectrum herbicides for weed control in wheat. *Planta Daninha* 36: p.e018174762.

Abbas T, Nadeem MA, Burgos NR, Matloob A, Kamran M, Munir MK, Kalyar MTA, Farooq N, 2024. Bio-management of weeds through utilization as value-added products: a review. *Int J Agric Biol* 31:355-366. DOI: 10.17957/IJAB/15.2152

Abbas T, Nadeem MA, Tanveer A, Ali HH, Matloob A, 2017b. Evaluation and management of acetyl-CoA carboxylase inhibitor resistant little seed canarygrass (*Phalaris minor*) in Pakistan. *Arch Agron Soil Sci* 63(11): 1613-1622.

Abbas T, Nadeem MA, Tanveer A, Syed S, Zohaib A, Farooq N, Shehzad, MA, 2017b. Allelopathic influence of aquatic weeds on agro-ecosystems: a review. *Planta Daninha* 35: e017163146. <https://doi.org/10.1590/S0100-83582017350100020>.

Abbas, T, Farooq N, Nadeem MA. 2025. Application of leaf water content measurement to improve herbicide efficacy for effective weed management in a changing climate—a review. *Crop Prot* 107138, <https://doi.org/10.1016/j.cropro.2025.107138>.

Akhter MJ, Abbas RN, Waqas MA, Noor MA, Arshad MA, Mahboob, W., Nadeem, F., Azam, M, Gull, U, 2017. Adjuvant improves the efficacy of herbicide for weed management in maize sown under altered sowing methods. *J Exp Biol Agric Sci* 5(1): 22-30.

Bagale S. Modes of Herbicide Action. In K. Ferreira Mendes (Ed.), *New Insights in Herbicide Science*. 2023. IntechOpen. <https://doi.org/10.5772/intechopen.105356>

Barbieri GF, Young BG, Dayan FE, Streibig JC, Takano HK, Merotto Jr, Luis A, 2023. Herbicide mixtures: interactions and modeling. *Adv Weed Sci* 40:e020220051.

Buncek JM, Wallace JM, Curran WS, Mortensen DA, VanGessel MJ, Scott BA, 2020. Alternative performance targets for integrating cover crops as a proactive herbicide-resistance management tool. *Weed Sci* 68(5): 534-544.

Chahal GS, Jordan DL, Burton JD, Danehower D, York AC, Eure PM, and Clewis B, 2012. Influence of water quality and coapplied agrochemicals on

efficacy of glyphosate. *Weed Tech* 26(2): 167-176.

Chauhan BS. 2020. Grand challenges in weed management. *Frontiers in Agronomy*. 1, 3. <https://doi.org/10.3389/fagro.2019.00003>.

Devkota P, Johnson WG, 2019. Influence of carrier water pH, foliar fertilizer, and ammonium sulfate on 2, 4-D and 2, 4-D plus glyphosate efficacy. *Weed Technol.* 33(4), 562-568.

Duke SO, 2020. Glyphosate. *Weed Sci.* 68(3):201-207.

Erenstein O, Jaleta M, Sonder K, Mottaleb K, Prasanna BM, 2022. Global maize production, consumption and trade: Trends and R&D implications. *Food Secur* 14(5): 1295-1319.

Ferreira PHU, Thiesen LV, Pelegrini G, Ramos MFT, Pinto MMD, da Costa Ferreira M, 2020. Physicochemical properties, droplet size and volatility of dicamba with herbicides and adjuvants on tank-mixture. *Sci Rep* 10(1):18833.

Idziak R, Sobczak A, Waligora H, Szulc P, 2023. Impact of multifunctional adjuvants on efficacy of sulfonylurea herbicide applied in maize (*Zea mays* L.). *Plants* 12(5): 1118.

Javaid MM, Tanveer A, Ahmad R, Yaseen M, Khalil A, 2012. Optimizing activity of herbicides at reduced rate on *Emex spinosa* campd. with adjuvants. *Planta Daninha* 30, 25-435.

Matloob A, Safdar ME, Abbas T, Aslam F, Khalil A, Tanveer A, Rehman, A, Chadhar AR, 2020. Challenges and prospects for weed management in Pakistan: A review. *Crop Prot* 134: 104724.

Mirgorodskaya AB, Kushnazarova RA, Lukashenko SS, Nikitin EN, Sinyashin KO, Nesterova LM, Zakharova LY, 2020. Carbamate-bearing surfactants as effective adjuvants promoted the penetration of the herbicide into the plant. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*. 586, 124252.

Nadeem MA, Abbas T, Tanveer A, Maqbool R, Zohaib A, Shehzad MA, 2017b. Glyphosate hormesis in broad-leaved weeds: a challenge for weed management. *Arch Agron Soil Sci* 63(3): 344-351.

Nadeem MA, Tanveer A, Abbas T, Bashir F, 2016. Possibilities of reducing herbicide doses through narrowed row spacing and use of adjuvant in maize (*Zea mays* L.). *Pak J Weed Sci Res* 22(4): 543-554.

Pacanoski Z. Herbicides and Adjuvants. In A. Price, J. Kelton, & L. Sarunaite (Eds.), *Herbicides, Physiology of Action, and Safety*. In Tech. 2015. <https://doi.org/10.5772/60842>

Palma-Bautista C, Tataridas A, Kanatas P, Travlos IS, Bastida F, Domínguez-Valenzuela JA, De Prado R, 2020. Can control of glyphosate susceptible and resistant *Conyza sumatrensis* populations be dependent on the herbicide formulation or adjuvants? *Agron* 10: 1599.

Pratt D, Kells JJ, Penner D, 2003. Substitutes for ammonium sulphate as additives with glyphosate and gluphosinate. *Weed Technol* 17: 576-581.

Radheshyam R, Jat S, Parihar C, Singh A, Pooniya V, Singh R, 2021. Post-emergence herbicides efficacy for weed management in kharif maize (*Zea mays*). *Ind J Agric Sci* 91: 1566-1570.

Steel RGD, Torrie JH, Dickey DA, 1997. *Principles and Procedures of Statistics. Multiple comparisons*. Third ed. McGraw Hill Book Co., New York, USA. 178-198pp.

Tanumihardjo SA, McCulley L, Roh R, Lopez-Ridaura S, Palacios-Rojas N, Gunaratna NS, 2020. Maize agro-food systems to ensure food and nutrition security in reference to the Sustainable Development Goals. *Glob Food Sec* 25: 100327.

Tanveer A, Abbas N, Safdar ME, Ikram RM, 2018. Alkyl ether sulfate improves efficacy of herbicides against common goosefoot and field bindweed in wheat. *Planta Daninha* 35: e017164307.

Travlos I, Cheimona N, Bilalis D. 2017. Glyphosate efficacy of different salt formulations and adjuvant additives on various weeds. *Agron* 7(3): 60. <https://doi.org/10.3390/agronomy7030060>.

Xie J, Zhao L, Liu K, Guo F, Liu W, 2018. Enantioselective effects of chiral amide herbicides napropamide, acetochlor and propisochlor: the more efficient R-enantiomer and its environmental friendly. *Sci Total Environ* 626: 860-866.

Zeisler-Diehl WV, Baales J, Migdal B, Tiefensee K, Weuthen M, Fleute-Schlachter I, Kremzow-Graw D, Schreiber L, 2022. Alcohol ethoxylates enhancing the cuticular uptake of lipophilic epoxiconazole do not increase the rates of cuticular transpiration of leaf and fruit cuticles. *J Agric Food Chem* 70(3): 777-784.