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Introduction

Maize (Zea mays L.) is a C4 plant and can utilize so-
lar energy more efficiently than any other cereals. This 
crop can be utilized for multiple purposes like human 
food, poultry feed, animal fodder, and industrial raw 
material. Its importance has been rapidly growing in 
recent years in Asia, where 4% annual growth recor-
ded as compared to other cereals. In Asia, maize con-
sumption (77%) is rising faster than yield (38%), (Pra-
sanna, 2014). To meet the global demand of maize we 
need to double its production by 2050. To sustainably 
meet the fast-rising demand for maize, genetic gain 
per unit time needs to be significantly enhanced. Tradi-
tional maize inbred line development requires 6-10 se-
asons of self-breeding, i.e., 3-5 years if two seasons in a 
year are utilized (Hallauer et al., 2010). Therefore, dou-
bled haploid (DH) technology is a perfect approach to 
accelerate varietal development. The efficiency of mai-
ze breeding programs will be significantly enhanced if 
superior crosses could be predicted before field eva-
luation based on the screening of parental inbred lines. 
The knowledge of different heritability patternshelps to 
sketch out selection in a breeding population. Heritabi-

lity study is of vital importance, as it will determine the 
choice of breeding procedures for selection.

Heritability is usually exploited to decide the breeding 
method and to predict selection gain(Ilker et al., 2009). 
The characters with high narrow-sense heritability are 
under additive genetic effect and they can easily be 
fixed with simple selections that result in very quick 
progress (Noor et al., 2017).

During the last 100 years, plant breeders have been 
working on heterosis and it is still their focus. It has 
been used in the production and breeding of many 
crop species (Melchinger and Gumber, 1998). Different 
hypothesis made by scientists and plant breeders are 
summarized (Table 1)

The objective of this study is to evaluate newly deve-
loped doubled haploid (DH) lines from a single donor 
source for their heterotic pattern, narrow and broad-
sense heritability, to identify better-performing parents 
for future hybrid-breeding program. The findings of 
this study will be useful in predicting the efficiency of 
doubled haploid (DH) lines to accelerate hybrid maize 
developmental programs.
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Abstract

In this study, fifteen cross combinations evolved from five doubled haploid maize lines, and three open-pollinated 
varieties used as testers were evaluated for broad-sense heritability, narrow-sense heritability, heterosis, and he-
terobeltiosis values during 2017-18. The broad-sense heritability and narrow-sense heritability recorded higher 
for all the studied traits. Higher broad-sense heritability was recorded for grains per cob (99.6%), grain yield per 
plant (98.8%), cob length (98.2%), and kernels per cob row (98.1%). Higher narrow-sense heritability was found 
in grain yield per plant (87.7%), cob height (79.8%), kernel per cob row (79.5%), cob diameter (68.7%) and grains 
per cob (66.1%). Most of the crosses exhibited very high values of heterosis and heterobeltiosis and ranged from 
-0.01 to 37.3 % percent for grain yield. The F1 hybrids, L1×T1, L1×T2, L1×T3, L2×T2, L4×T1, L4×T2, L5×T1, 
L5×T2, L5×T3, L2×T3, L3×T3, and L5×T3 were shown to be the best with very good heterosis and heterobeltiosis 
values for most of the grain yield-related traits. Heterosis and heritability analysis indicated that these doubled 
haploid lines evolved from a very narrow genetic source (single cross F1 hybrid) showed a great potential toward 
improvement in grain yield and its related traits. It is recommended that instead of crossing them with low yielding 
open-pollinated varieties as testers these lines must be crossed in diallel mating designfor further revealing their 
potential toward grain yield and its related traits.
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Material and methods

	 Field trials and maize genotypes

The present study carried out in the field research 
area of the Department of Plant Breeding and Gene-
tics, University of Agriculture Faisalabad, Pakistan du-
ring the spring and summer seasons of the years 2016 
and 2017. The maize genetic material was comprised 

of eight parents and their fifteen F1 hybrids. The five 
doubled haploid (DH) lines developed through a single 
donor source (F1 hybrids, FH-949) were crossed with 
three OPVs (open-pollinated varieties) taken at random 
as testers using Line × tester mating design. The seed 
of the three OPVs namely Agati-2002, EV-5098, and 
EV-3001 collected from Ayub Agriculture Research In-
stitute, Faisalabad, Pakistan. The five parental doubled 
haploid (DH) lines were crossed with the three open 
pollinated verities (OPVs) as testers during the spring 
season of the year 2016. In the next year during the 
same spring season five parental lines and three testers 
along with their fifteen cross combinations were sown 
in the field under randomized complete block design 
(RCBD) with three replications. 

	 Agronomical trait evaluation

The heterosis and heterobeltiosis values for the cross 
combinations were also computed (Falconer and 
Mackay, 1996). The values of the broad-sense herita-
bility (Falconer and Mackay, 1996) and narrow-sense 
heritability using offspring-parent regression (Falconer, 
1989) also computed. The whole experiment carried 
out under field conditions with 25 cm plant-to-plant 
and 75 cm row-to-row distance. The data of ten plants 
from each replication of plant height (cm), cob height 
(cm), cob length (cm), ear diameter (cm), kernel rows 
per cob, kernels per ear row, grains per plant, 100-grain 
weight (g) and grain yield per plant (g) recorded.

	 Data analysis 

The recorded data analysed using analysis of variance 
(Steel et al., 1997). The data collected for all the nine 
parameters was also statistically analysed for the he-
terosis study. The values of mid parent, better parent, 
heterosis and heterobeltiosis were computed (Falconer 
and Mackay, 1996).

Parent heterosis over mid parent 

(MP) = 100 × (F1 - MP) / MP

Parent heterosis over better parent

 (BP) = 100 × (F1 - BP) / BP

MP = [Female parent (♀) + Male parent (♂)] / 2

BP is mean of better parents

A t-test was applied (Wynne et al., 1970) to test the si-
gnificance of heterosis over mid and better parents’ as

t (static) = (F1-MP) / (3/8 δ2 E)1/2

t (static) = (F1-BP) / (1/2 δ2 E)1/2

Scientific views References

(The dominance hypothesis) 

After crossing the combination 
of different dominant alleles, 
contributed by each parent results 
in the increase of vigor. 

(Bruce, 1910; Keeble and Pellew, 
1910)

(The heterozygosis theory) 

The combination of the 
heterozygotes of different alleles 
increases vigor.

(Shull, 1911; East and Hayes, 1912; 
East, 1936) 

(Overdominance) 

Heterotic gene interaction.
(Hull, 1945)

The nature of the inter-allelic 
interaction may work similarly to 
dominant complementary factors.

(Brieger, 1930) 

The quantitative gene interaction 
produces heterosis.

(Rasmusson, 1933)

“Andropogoneae” a wild ancestor 
of maize already possessed the 
heterotic gene system.

(Collins, 1918)

Recessive lethal has become 
established as balanced lethal 
in inter-specific hybrid but 
incompatible when homozygous.

(Brieger, 1944)

Maize is an excellent model 
species for the study and 
application of heterosis.

(Flint-Garcia et al., 2005; Troyer, 
2006) 

The basic mechanism that results 
in heterosis is still unclear. 

(Coors and Pandey, 1999) 

Heterosis is a result of the variation 
that is present within a species. 
In maize a surprisingly high level 
of allelic variation is documented 
which is generated by transposons 
and repetitive DNA. In a hybrid, 
more comprehensive and novel 
allelic interactions may be the 
reason for heterosis.

(Nathan and Stupar, 2007)

In maize heterosis increases yields 
by 15% per annum. 

(Duvick, 1999)

Table 1 -Scientific views and references regarding heterosis in 
plant breeding history



DH-maize hybridsgrain yield and related traits

65 ~ M 20

3

Maydica electronic publication - 2020

Crosses

Grain yield/plant Plant height cob height cob length cob height kernel rows/cob kernels per cob 100-grain weight grains per plant

Mid 
parent 

heterosis

H
et

er
o

b
el

ti
o

si
s

Mid 
parent 

heterosis

H
et

er
o

b
el

ti
o

si
s

Mid 
parent 

heterosis

H
et

er
o

b
el

ti
o

si
s

Mid 
parent 

heterosis

H
et

er
o

b
el

ti
o

si
s

Mid 
parent 

heterosis

H
et

er
o

b
el

ti
o

si
s

Mid 
parent 

heterosis

H
et

er
o

b
el

ti
o

si
s

Mid 
parent 

heterosis

H
et

er
o

b
el

ti
o

si
s

Mid 
parent 

heterosis

H
et

er
o

b
el

ti
o

si
s

Mid 
parent 

heterosis

H
et

er
o

b
el

ti
o

si
s

L1×T1 -27.4** -5.53** 4.5** 3.9** 11.3** 4.7** -2.79** -1.03** 6.76** 2.23** 7.32** 1.91 ns -0.67** -0.13** -0.46** -0.09**  -18.7** -7.4**

L1×T2 -23.4** -4.49** 2.3** 2.0** -0.4** -0.2** 3.89** 1.45** -1.04** -0.35** 15.0** 3.82 ns -13.95** -3.00** 4.80** 0.98** -19.2** -7.4**

L1×T3 -8.48** -1.55** 5.6** 4.7** 1.9** 0.9** 4.99** 1.78** 5.71** 1.88** 2.44** 0.63** -3.79** -0.75** 3.51** 0.74** -8.86** -3.1**

L2×T1 -0.01** -0.003** 12.3** 9.3** 9.4** 3.2** 11.92** 3.84** -9.09** -3.17** 17.07** 4.46 ns 10.00** 2.00** -8.75** -1.97**  16.2** 6.2**

L2×T2 15.6** 3.02** 7.4** 5.7** -2.6** -1.0** 7.36** 2.39** -12.13** -4.34** 20.00** 5.09** 0.55** 0.13** 3.50** 0.78 ns 17.7** 6.6**

L2×T3 37.3** 6.84** 17.2** 12.7** 0.6** 0.2** 14.24** 4.39** -8.78** -3.05** 17.07** 4.46 ns 11.24** 2.38** 8.62 ns 1.97 ns 34.6** 11.8**

L3×T1 13.6** 2.59** 0.4** 0.3** 5.5** 1.8** 1.52** 0.51** -11.03** -3.52** -4.55** -1.28** 10.64** 2.50** -1.36** -0.29**  29.7** 10.7**

L3×T2 19.5** 3.52** 0.6** 0.5** 1.2** 0.4** 3.29** 1.12** -10.00** -3.29** -2.33** -0.64 ns -3.32** -0.88** 0.81** 0.17** 32.4** 11.4**

L3×T3 35.7** 6.09** 4.2** 3.3** 5.4** 1.9** 7.60** 2.48** -9.96** -3.17** -4.55** -1.28** 8.63** 2.13** 3.44** 0.74** 48.6** 15.4**

L4×T1 -26.8** -5.99** 3.8** 2.9 ** 8.5** 2.9** 14.44** 5.09** -1.14** -0.35** 2.44** 0.64** 27.61** 5.63** -5.31** -1.32 ns 3.83** 1.58**

L4×T2 -9.4** -2.01** 1.3** 1.0** 3.4** 1.3** 15.53** 5.52** -6.27** -1.99** 5.00** 1.28 ns 11.83** 2.75** -9.31** -2.27**  6.65** 2.67**

L4×T3 4.76** 0.97** 7.9** 5.9** -3.2** -1.2** 17.47** 5.94** 3.82** 1.17** 2.44** 0.64** 25.58** 5.51** -10.0** -2.51**  17.0** 6.26**

L5×T1 -4.74** -0.96** 6.7** 5.7** 15.8** 5.3** 1.49** 0.51** -2.31** -0.82** 2.44** 0.64** 25.00** 5.01** -1.09** -0.24**  4.05** 1.58**

L5×T2 -1.78** -0.34** 4.9** 4.4** 6.9** 2.6** 4.31** 1.49** -6.12** -2.23** 5.00** 1.28 ns 4.92** 1.13** -0.56** -0.12**  5.94** 2.25**

L5×T3 2.76** 0.51** 10.7** 8.9 ns 3.9** 1.5** 8.88** 2.95** -1.32** -0.47** 2.44** 0.64** 13.61** 2.88** -5.38** -1.19**  17.9** 6.16**

** = Significant at 5% probability level, ns = non-significant
L1=Parental doubled haploid DH-Line1, L2=Parental doubled haploid DH-Line2, L3=Parental doubled haploid DH-Line3, L4=Parental doubled haploid DH-Line4, L5=Parental doubled haploid DH-Line5                                              

Table 2 - Heterosis and heterobeltiosis for grain yield and its related traits of maize
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	 Coefficients of variability 

The means, standard error and coefficients of variability 
of each character were calculated.

CV (%) = (SD/ ) × 100

Where

CV 	 = Coefficient of variability (%)

SD 	 = Standard deviation

X 	 = grand mean for the trait

Genotypic coefficient of variance was determined by:

GCV= [(√δ2
g/X ] × 100

and

Phenotypic coefficient of variability was determined by:

PCV = [√δ2P/X ] × 100

Where 

δ2g	 = Genotypic variance

δ2p	 = Phenotypic variance

Results and discussion

	 Heterotic pattern

 	 Significant mid parent heterosis and heterobeltio-
siswas reported for most of the F1 crosses for grain 
yield and its related traits (Table 2). Better parent hete-
rosis or heterobeltiosis was significant for almost all F1 
hybrids except for the cross combination L5×T3 which 
showed the non-significant result.

	 Plant height

The higher heterobeltiosis was recorded for the F1 
hybrids, L2×T1, L2×T3, and L5×T1 for plant height. 
The higher plant height indicated that the respective 
hybrids may be used for fodder production (Ayub et 
al., 2002). The negative heterosis and heterobeltiosis 
indicate the decrease in the trait may occur in the next 
generation; therefore, the selection may be made to fix 
decrease in specific trait for the indirect improvement 
of crop plant yield and productivity (Ali et al., 2013; Ali 
et al., 2014;Appunu and Satyanarayana., 2007; Devi et 
al., 2007; Frascaroli et al., 2007).

	 Cob height

For the cob height significant and positive hetero-
sis and heterobeltiosis was recorded for all of the F1 
hybrids except for 3 cross combinations (L1×T2, L2×T2, 
and L4×T3) which showed negative and significant va-
lues. The parents of these F1 hybrids (L1×T2, L2×T2, 
and L4×T3) may be used for the development of plants 
with low bearing cobs. The negative heterobeltiosis in-
dicated that the cob height in next-generation may be 

lower;it is a recommended trait for the good perfor-
mance of the hybrids. The cob height is an important 
trait to develop lodging resistant and more yielding 
maize hybrids (Zsubori et al., 2019). The maize plant 
bearing cobs at lower internodes are usually resistant 
to lodging and can tolerate higher plant body/cobs 
weights (Muraya et al., 2006; Ji et al., 2006; Devi et 
al., 2007).

	 Cob length

The positive and significant herterosis and heterobel-
tiosis values for cob length for all F1 hybrids were re-
corded except for the cross combination L1×T1 that 
showed significant but negative heterosis. The F1 
hybrids, L2×T3, L4×T1, L4×T2, and L4×T3 were found 
to be the best F1 hybrids for cob length of maize. The 
cob length determined grain yield per plant and plays 
an important role in improving grain yield and produc-
tion of maize. The selection based on cob length may 
be fruitful to improve grain production (Khan et al., 
2008; Ali et al., 2014; Amanullah et al., 2011; Muraya et 
al., 2006; Solomon et al., 2012).

	 Cob diameter

The significant and positive heterosis and heterobel-
tiosis for cob diameter were recorded for 3 out of 15 
F1 hybrids (L1×T1, L1×T3, and L4×T3). The higher cob 
diameter indicated that the grain to stover ratio may 
be higher. If the grain size is high then selection can be 
made based on cob diameter to improve grain yield 
in maize (Manivannan, 1998; Yang et al., 2005; Troyer, 
2006; Kanagarasu et al., 2010).

	 Kernel rows per cob

The better parent heterosis for kernel rows per cob was 
found significant and positive for 6 out of 15 hybrids 
(L1×T3, L2×T2, L4×T1, L4×T3, L5×T1, and L5×T3). The 
highest value of heterobeltiosis for the trait kernel row 
per cob was found for the F1 hybrids L2×T2. Various 
researchers and maize breeders have suggested grain 
rows per cob as the main selection criterion (Meghji et 
al., 1984; Tollenaar et al., 2004; Duvick, 2005).

	 Kernels per cob row

The significant and positive heterosis and heterobel-
tiosis were found for kernels per cob row for 11 cross 
combinations (L2×T1, L2×T2, L2×T3, L3×T1, L3×T3, 
L4×T1, L4×T2, L4×T3, L5×T1, L5×T2 and L5×T3). A lar-
ge number of grains per cob row indicated that the cob 
length might be higher due to which the number of 
grains per cob and grain yield per plant may also be hi-
gher (Manivannan, 1998; Devi and Muhammad, 2001). 
This indicated that these F1 hybrids may be used for 
the improvement of grain yield in maize(Kutlu and Sirel, 
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2019; Tollenaar et al., 2004; Yang et al., 2005; Alam et 
al., 2008).

	 100-grain weight

The F1 hybrids, L1×T3, L3×T2, and L3×T3 were found 
to be the best F1 hybrids for the 100-grain weight of 
maize. The hybrids with higher 100-grain yield indica-
ted that the grain size may be higher or bold seeds will 
be produced which leads to improving grain yield per 
plant (Shah et al., 2009).

	 Grains per plant

The F1 hybrids, L1×T1, L1×T2, L1×T3, L2×T2, L4×T1, 
L4×T2, L5×T1, L5×T2 and L5×T3 were found to the 
best F1 hybrids for grains per plant of maize. The se-
lection based on grains per plant may be helpful to de-
velop higher yielding maize hybrids (Khodarahmpour 
and Hamidi, 2012; Konak et al., 2015;Sekip et al., July 
2011; Tollenaar et al., 2004).

	 Grain yield per plant

The F1 hybrids, L2×T2, L2×T3, L3×T1, L3×T2, and 
L3×T3 were found to be the best for grain yield per 
plant. The highest grain yield per plant may be used as 
main selection criteria to develop higher-yielding mai-
ze hybrids for better crop production and productivity 
(Katana et al., 2005; Makumbi et al., 2005; Revilla et 

al., 2006; Meseka et al., 2006; Guimaraes et al., 2007; 
Ojo et al., 2007; Geeta et al., 2001; Kara, 2001; Dickert 
and Tracy, 2002; Malik et al., 2004; Bajaj et al., 2007; 
Amiruzzaman et al., 2011; Ikramullah et al., 2011; Jain 
and Bharadwaj, 2014).

	 Heritability pattern

The broad-sense heritability and narrow-sense heritabi-
lity was recorded higher for most of the traits studied. 
The traits plant height, cob height, cob length, cob 
diameter, kernels per cob row, kernel rows per cob, 
grain per plant and grain yield per plant were highly 
controlled by the additive type of gene action. The ran-
ge of broad-sense heritability for the different traits un-
derstudy was recorded from 81.5% to 99.6%(Table 3). 
Higher heritability was found for grains per cob (99.6%) 
followed by plant height (99.1%), grain yield per plant 
(98.8%), cob height (98.3%), cob length (98.2%) and 
kernels/grains per cob row (98.1%). The result of the 
narrow sense heritability (Table 3)for plant heightwas 
found high (63.3%),for cob height (79.8%), (60.8) for 
cob length, (68.7%) for cob diameter, (77%) for the 
trait kernel rows per cob, (79.5%) for kernels per cob 
row, (66.1%) for grains per plant and (87.7%) for grain 
yield per plant. The classification of heritability stands 
low when it is 50 percent (Stansfield, 1991). Some stu-

Fig. 1 - Graphical representation of narrow-sense heritability (h2NS) of grain yield and related traits using offspring-parent regression
Parental values of the grain yield and related traits are taken at the X-axis and values of the offspring for the same traits are taken at 
the Y-axis.
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dies have reported high, narrow-sense heritability at 73 
percent (Wannows et al., 2010) and moderate at 40.65 
percent for yield (Hefny, 2007). High narrow sense he-
ritability indicated that the contribution of the additive 
variance effect was greater in the inheritance of these 
characters(Woodhouse et al., 2006; Buckler et al., 2009; 
Peiffer et al., 2013). A selection of early generations is 
more effective to develop these characters, and huge 
progress in selection can be obtained if the selection 
is conducted on that character(Aditya et al.,2010; Aly 
et al., 2011; Bhavana et al., 2011; Sumalini, 2012; Raji-
tha, 2013). Various researchers suggested narrow sen-
se heritability as selection criteria for the development 
of synthetic crop varieties (Ashrai and Mc-Nelly, 1990; 
Sujiprihati et al., 2003; Khan et al., 2014). The narrow-
sense heritability (42.8%) was found lower for the trait 
100-grain weight. This showed the presence of the do-
minant type of gene action(Yadav et al., 2002; Rafique 

et al., 2004; Seanski et al. 2005; Akbar et al., 2006; Ali 
et al., 2010; Sudika et al., 2015).The higher dominan-
ce gene action and lower narrow-sense heritability for 
100-grain weight suggested that the hybrid selection 
based on 100-grain weight may be helpful to develop 
higher potential hybrids of maize to improve grain yield 
per plant (Kumar et al. 1999). Various researchers sug-
gested higher dominance as selection criteria for the 
development of higher-yielding maize hybrids (Saleem 
et al., 2002; Holland et al., 2003; Kumar et al., 2005; 
Azizi et al., 2010).

When evaluating the results it should be remembered 
that these DH-lines were obtained using a very re-
stricted genetic base (a single F1 hybrid), involving two 
inbred lines of tropical origin. The 5 DH lines tested 
only made it possible to experiment with an extremely 
low sample number. If the work were expanded to in-

Parameter VAR (G) VAR (P) VAR (E) h2BS h2NS

Plant Height (cm) 1

350.442 353.527 3.085 99.1 % 63.3%

GCV PCV ECV

12.181 12.235 1.143

Cob Height (cm) 2

154.438 157.118 2.681

GCV PCV ECV 98.3 % 79.8%

18.623 18.784 2.454

Cob Length (cm) 3

6.125 6.238 0.113

GCV PCV ECV 98.2 % 60.8%

19.861 20.043 2.697

Cob Diameter (cm) 4

0.274 0.292 0.018

GCV PCV ECV 93.9 % 68.7%

11.469 11.837 2.932

Kernels Rows Per ear 5

1.291 1.534 0.243

GCV PCV ECV 84.1 % 77%

8.031 8.755 3.486

Kernels per ear row 6

83.301 84.877 1.576

GCV PCV ECV 98.1 % 79.5%

30.916 31.207 4.252

Grains per plant 7

25370.7 25466.1 95.481

GCV PCV ECV 99.6 % 66.1%

40.680 40.756 2.496

100 grain weight (g) 8

7.423 9.151 1.728

GCV PCV ECV 81.1 % 42.8%

8.961 9.950 4.324

Grain yield per plant (g) 9

3040.454 3078.501 38.046

GCV PCV ECV 98.8 % 87.7%

45.773 46.059 5.120

VAR (G)= genotypic variance, VAR (P)= phenotypic variance, VAR (E)= environmental variance, 
h2BS= broadsense heritability, h2NS= narrosense heritability, GCV= genotypic cofficient of variance, 
PCV= phenotypic cofficient of variance, ECV= environmental cofficient of variance

Table 3 -Genetic components for grain yield and its related traits
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clude DH lines with a broader genetic background and 
a higher number of cross combinations, there may be 
the possibility of more genetic variability and better 
combinations (Spitko et al., 2010). On the other hand, 
a low-yielding tester was used as a male parent in the 
cross combination with the female doubled haploid li-
nes. If some higher-yielding male parents or these dou-
bled haploid lines were crossed with each other, the re-
sults might be more promising. These lines can also be 
exploited for DH-hybrid development by inter-crossing 
them in diallel fashion to further exploit their genetic 
potential for yield and yield contributing traits.

Conclusions

The doubled haploid lines developed from a single do-
nor source (F1 hybrid) possessed significant variability. 
The total variability present in these doubled haploid 
DH-lines was mostly genetic and hence, could be ef-
fectively utilized in maize breeding programs. These 
doubled haploid DH-lines can directly be utilized for 
varietal development.
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