
Original paper

64 ~ M 16

Open Access

Maydica electronic publication - 2019

Maydica

Introduction

	 Drought is one of the main constraints to crop 
production throughout the world (Boyer, 1982). 
Daryanto et al (2016) found that maize had a yield 
reduction of 39.3% at approximately 40% water 
reduction, indicating that it was very sensitive to 
drought, particularly during the reproductive phase. 
Due to the global climate change, the frequency of 
drought disaster occurrence will increase in the world, 
resulting in the big fluctuation of maize yield and thus 
instability of food security ( Li et al, 2009). 

Development of improved maize genotypes with 
drought tolerance is one important approach to 
ameliorating the yield reduction under drought 
because genetic improvement can probably close 20-
25% of the yield gaps between drought-affected and 
optimal conditions (Edmeades, 2013). In the past, 
much breeding research was conducted to improve 
performance under drought conditions, with some 

achievements (Campos et al, 2004). Conventional 
selection by CIMMYT specifically for drought tolerance 
by focusing on yield and associated secondary traits has 
resulted in a gain of around 100 kg/ha/yr, in tropical maize 
populations (Edmeades, 2013). However, the breeding 
progress of drought tolerance improvement has been 
slow as the decreasing heritability of phenotypes under 
drought stress (Messmer et al, 2009). Marker-assisted 
selection (MAS) is now having a significant impact, 
and when well executed could double gains from 
conventional drought tolerance selection (Edmeades, 
2013). Thus, more understanding of the genetic basis 
of yield-related traits under different water regimes is 
necessary for molecular breeding for drought tolerance 
(Mir et al, 2012). 

Because of the extremely complicated genetic basis 
of yield, the stability of crop performance under 
drought-stressed conditions is low (Tuberosa et al, 
2002). Genetic dissection of yield-related traits such 
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Abstract

Drought is one of the most essential factors influencing maize yield. Improving maize varieties with drought 
tolerance by using marker-assisted or genomic selection requires more understanding of the genetic basis of 
yield-related traits under different water regimes. In the present study, 213 F2:3 families of the cross of H082183 
(drought-tolerant) × Lv28 (drought susceptible) were phenotyped with five yield-related traits under four well-
watered and six drought environments for two years. Quantitative trait loci analysis identified 133 significant QTLs 
(94 QTLs for ear traits and 39 QTLs for kernel traits) based on single environment analysis. The joint-environment 
analysis detected 25 QTLs under well-watered environments (eight QTLs for ear length, eight for ear diameter, 
one for ear weight, two for kernel weight per ear, and six for 100-kernel weight), and nine QTLs under water-stres-
sed environments (two QTLs for ear length, three for ear diameter, one for ear weight, one for kernel weight, and 
two for 100-kernel weight). Among these joint-environment QTLs, one common QTL (qEL5) was stably identified 
at both of the water regimes. Meanwhile, two main-effect QTLs were detected in the well-watered environments, 
i.e. qEL10 for ear length and qHKW2 for 100-kernel weight. Also, qED8, qEW8 and qKW8 were found to be located 
in the same interval of Chr. 8. Similarly, qEL4s and qKW4s were found to be located in the same interval under 
water-stressed environments. These genomic regions could be candidate targets for further fine mapping and 
marker-assisted breeding in maize.
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as ear traits and kernel traits may be helpful to breed 
for drought-tolerant maize hybrids due to the high 
correlations between the traits of kernel structure and 
yield components ( Li et al, 2009). Actually, a lot of 
papers regarding quantitative trait loci (QTLs) of those 
yield-related traits in maize have been published since 
the advent of molecular markers (Ajnone-Marsan et 
al, 1995; Austin and Lee, 1996; Berke and Rocheford, 
1995; Chen et al, 2016; Chen et al, 2017; Frova et al, 
1999; Jiang et al, 2015; Karen Sabadin et al, 2008; Li 
et al, 2013; Li et al, 2017; Liu et al, 2014; Messmer et 
al, 2009; Peng et al, 2011; Raihan et al, 2016; Stange 
et al, 2013; Veldboom and Lee, 1994; Veldboom and 
Lee, 1996; Yan et al, 2006; Yang et al, 2016; Zhang 
et al, 2014) . Especially, a number of QTLs conferring 
ear- and kernel-traits have been detected by using 
phenotypic data obtained under different water 
regimes, which provide valuable information to MAS 
and genomic selection (Guo et al, 2011; Nikolić et al, 
2011; Nikolić et al, 2013; Prasanna et al, 2009; Ribaut 
et al, 1997; Tan et al, 2011). For example, Almeida et al 
(2013) identified a total of 83 QTLs through the single 
environment analyses and seven meta-QTL (mQTL) for 
grain yield by using three tropical populations, among 
which six mQTLs on Chr. 1, 4, 5 and 10 for GY were 
constitutively expressed across water stressed (WS) and 
well-watered (WW) environments. Semagn et al (2013) 
identified 59 meta-QTLs for grain yield (GY) across 18 
bi-parental maize populations evaluated in the same 
conditions across 2-4 managed water stressed and 
3-4 well-watered environments, among which the four 
mQTLs (mQTL2.2, mQTL6.1, mQTL7.5 and mQTL9.2) 
could be considered for fine mapping. But they found 
that few QTL were detected under both environmental 
treatments and/or multiple (> 4 populations) genetic 
backgrounds. Zhao et al (2018) identified 52 QTLs 
under water-stressed conditions, among which 21 were 
validated to be stable under multiple water-stressed 
conditions. They also identified 36 meta-QTLs across 
26 populations under 52 well-watered and 38 water-
stressed conditions by using a meta-analysis.

However, the genetic and molecular mechanisms of 
yield-related traits have still been poorly understood 
in maize until now. Because the majority of detected 
QTLs for yield-related traits could explain only a small 
percentage of phenotypic variation and could not 
be refined in different environments and populations 
(Bernier et al, 2008), more investigations on genetic 
dissection of yield-related traits under different water 
regimes are required to provide valuable information to 
geneticists and breeders. Therefore, the main aims of 
this study were to (1) detect and map QTLs controlling 
yield-related traits under normal and water-stressed 

conditions using an F2:3 population across multiple 
environments and evaluate their effects, and (2) dissect 
QTL by QTL interaction (epistasis) for these traits. The 
results obtained in this research could contribute to the 
development of effective approaches for fine mapping 
and breeding in maize in the future.

Materials and Methods

Field experiments and trait valuations

Totally, 213 F2:3 families resulted from the cross of 
H082183 (a drought-tolerant inbred) and Lv28 (a 
drought-sensitive inbred) were planted at four locations 
in 2017, i.e. Changping of Beijing (N39°54′, E116°23′), 
Zhangye of Gansu (N38°56′, E100°27′), Bayannur of 
Inner Mongolia (N40°43′, E107°24′) and Xinxiang of 
Henan (N35°18′, E113°55′), and four locations in 2018, 
i.e. Changping, Hohhot of Inner Mongolia (N40°83′, 
E111°73′), Dingxiang of Shanxi (N38°50′, E112°95′), 
and Zhangjiakou of Hebei (N40°82′, E114°88′). At the 
locations of Zhangye and Bayannur in 2017, there 
were two irrigation schemes, i.e. normal irrigation and 
half-amount irrigation that half of the water amount 
for normal irrigation was applied at the time point of 
irrigation. At the locations of Changping, Zhangjiakou, 
Huhehot and Dingxiang in 2018, no irrigation was 
applied except for the sowing irrigation to simulate 
the rain-fed cultivation. Thus, a total of six drought 
environments (Zhangye-2017S, Bayannur-2017S, 
Changping-2018, Hohhot-2018, Dingxiang-2018, and 
Zhangjiakou-2018) and four well-watered environments 
(Changping-2017, Zhangye-2017W, Bayannur-2017W, 
and Xinxiang-2017) were set, with two replicates. The 
randomized block design with two-row plots was used 
in all the experiments. The rows were set to 3 m in 
length and 0.6 m apart, including 11 plants in each row.

Five yield-related traits were investigated in this study: 
ear length (EL), ear diameter (ED), ear weight (EW), 
kernel weight per ear (KW), and hundred-kernel weight 
(HKW). Five ears in each row were selected for traits 
measurements. EL, ED, EW and KW were measured 
manually. The method of HKW measurement is referred 
to as Li et al (2013). 

Statistical analysis

The variance and ANOVA analysis of phenotypic data 
were performed using SAS v9.1. The broad-sense 
heritability (h2) for each trait was calculated based on 
the formula: h2 = σg2/(σg2+σge2/e +σe2/re), where σg2 is 
the genotypic variance, σge2 is the interaction between 
genotype and environment, σe is the variance of 
experimental error, e is the environment's number and 
r is the replications number per environment (Hallauer 
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and Miranda, 1988). Pearson’s correlation coefficient 
between different traits was calculated using R v3.5.1.

Genotyping and bin-map construction

	 The genotyping and bin-map construction of 
H082183 × Lv28 F2:3 population was published in 

our previous study (Liu et al, 2019). Briefly, the DNA 
of each family was isolated using CTAB. The SNPs 
were genotyped by Axiom Maize 55K SNP Array 
(Xu et al, 2017). After filtering out the monomorphic 
SNPs, low-quality SNPs and segregation distortion 
SNPs, a modified hidden Markov model (HMM) was 
used for bin-map construction. The genetic map was 
constructed using IciMapping v4.1 (Meng et al, 2015).

QTL analysis

	 QTL mapping was conducted using the inclusive 
composite interval mapping (ICIM) method of 
IciMapping v4.1 (Meng et al, 2015). BLUP values of 
each trait under drought and well-watered treatments 
were used for QTL analysis, separately, using SAS 
v9.1 (Henderson, 1975). The logarithm of odds (LOD) 
threshold (LOD > 3.24) was determined by 1000 
permutations test at P < 0.05. The confidence interval 
of QTL was confirmed by 2.5-LOD drop method. The 
epistatic QTL detection was performed using the 
model of EPI in IciMappingv4.1 (Meng et al, 2015), with 
a threshold of LOD > 5.

Results

Phenotypic variation

The ear length (EL), ear diameter (ED), ear weight (EW), 
kernel weight per ear (KW), and hundred-kernel weight 
(HKW) of the H082183 × Lv28 F2:3 population were 
measured under four well-watered environments and 
six drought environments. ANOVA analysis showed 
that the genotypic effects were significant (P < 0.05) 

Treatment Trait a Parent Population

H082183 Lv28 Mean SDb Range Skew SEc Gd G×Ee H2 f

Well-watered

EL (cm) 13.69 12.16 14.69 1.43 9.40-19.68 -0.11 0.03 5.6** 1.7** 0.72

ED (cm) 3.68 3.72 3.94 0.25 3.00-5.80 0.03 0.01 0.14** 0.06** 0.64

EW (g) 125.93 104.01 131.62 58.91 43.40-444 1.67 1.44 1327.81ns 976.18ns 0.28

KW (g) 69.28 59.68 90 20.16 25.33-161.31 0.05 0.49 521.03** 290.46** 0.51

HKW (g) 28.76 27.32 26.28 4.35 13.27-41.26 0.22 0.09 26.85** 9.72** 0.69

Water-stressed

EL (cm) 13.34 11.66 13.57 1.93 4.00-19.44 -0.29 0.04 6.34** 2.39** 0.65

ED (cm) 3.46 3.33 3.46 0.49 1.07-5.60 -0.13 0.01 0.28** 0.10ns 0.54

EW (cm) 107.86 83.97 104.7 52.81 23.33-372.00 1.93 1.05 1415.52** 898.79ns 0.39

KW (g) 76.23 60.26 75.26 21.8 13.80-188.80 0.26 0.43 559.29** 314.32ns 0.46

HKW (g) 26.28 25.44 23.68 4.38 11.87-47.10 1.2 0.09 25.15** 16.47** 0.47

a EL: ear length, ED: ear diameter, EW: ear weight, KW: kernel weight per ear, HKW: hundred kernel weight.
b Standard deviation.
c Standard error
d Genotype. **: P < 0.01, ns: not significant
e Genotype×environment interaction. **: P < 0.01, ns: not significant
f Broad-sense heritability.

Table 1 - The distribution and heritability of different yield-related traits.

Fig. 1 - The correlations between different traits. (A) The cor-
relations between different traits across the four well-watered 
environments. (B) The correlations between different traits across 
the six water-stressed environments. The numbers in the upper 
right panel refer to the correlation coefficients between the five 
traits. **: P < 0.01, ***: P < 0.001.



QTL analysis for yield-related traits

64 ~ M 16

4

Maydica electronic publication - 2019

for all traits under both well-watered and water stress 
environments (Table 1). EL, ED, KW, HKW under well-
watered environments and EL and HKW under drought 
environments were significantly affected by the 
interaction of genotype and environment. Under well-
watered environments, the broad-sense heritability 
(H2) of EL was the highest (72%), followed by HKW (69 
%), ED (64%), KW (51%), and the H2 of EW was the 
lowest (28%). Under drought environments, the H2 of 

EL was also the highest (65%), followed by ED (54 %), 
HKW (47%), KW (46%) and EW (39%). EL, ED, EW and 
KW showed a significant correlation (P < 0.01) under 
both well-watered and drought treatments (Figure 1). 
KW and EW showed a strongest significant correlation 
under well-watered (r = 0.76) and drought (r = 0.79) 
conditions (P < 0.001).

Treatment Trait a QTL Chr Interval (cM) Physical position 
(Mb) b LOD c PVE (%) d Add e Dom f

Well-watered

EL qEL1-1 1 32.01-32.72 17.90-18.63 5.97 4.88 0.2 0.08

EL qEL1-2 1 212.99-213.23 298.59-299.17 5.11 4.17 -0.21 0.01

EL qEL3 3 116.88-117.82 180.73-181.9 4.3 3.47 -0.18 0.1

EL qEL5 5 50.98-51.93 22.89-23.46 4.42 3.59 0.2 0.03

EL qEL7-1 7 67.07-68.96 125.06-125.32 6.08 5.05 0.21 0.05

EL qEL7-2 7 125.63-125.86 162.66-162.88 10.15 8.76 -0.29 0.01

EL qEL8 8 91.76-92.47 160.13-160.22 9.48 8.15 0.29 0.01

EL qEL10 10 47.91-48.14 113.16-114.42 19.28 18.11 0.43 0.09

ED qED1-1 1 42.01-43.67 25.49-27.35 5.9 7.93 0.04 0.01

ED qED1-2 1 91.95-92.42 150.40-157.92 6.21 6.57 0.04 0.01

ED qED1-3 1 174.95-176.13 273.88-274.03 3.83 3.97 -0.03 0

ED qED3 3 142.1-143.76 236.09-237.12 8.89 12.26 -0.04 0.01

ED qED4-1 4 34.68-35.39 10.45-10.75 4.02 5.25 -0.03 0.01

ED qED4-2 4 56.65-57.35 99.96-100.07 5.19 6.87 0.03 -0.01

ED qED5 5 0.71-1.18 1.53-1.55 5.38 5.7 -0.03 -0.01

ED qED8 8 73.59-74.54 144.12-144.77 7.48 7.98 0.04 0.01

EW qEW8 8 73.59-74.54 144.12-144.77 5.37 12.08 6.17 -1.65

KW qKW8 8 73.59-74.54 144.12-144.77 4.11 8.26 7.87 4.09

KW qKW10 10 0-2.14 1.92-2.14 3.5 6.55 4.82 9.27

HKW qHKW1-1 1 19.4-20.35 9.57-10.06 3.8 4.34 0.37 -0.27

HKW qHKW1-2 1 69.21-70.86 52.65-54.39 3.92 4.62 0.42 0.02

HKW qHKW2 2 63.39-64.81 39.78-40.48 19.34 26.89 -1.05 -0.07

HKW qHKW4 4 137.86-138.33 205.83-217.94 3.64 4.23 0.38 0

HKW qHKW7 7 103.85-104.8 153.08-153.27 7.07 8.5 0.57 0.06

HKW qHKW9 9 36.66-39.28 20.38-20.90 5.69 6.74 0.46 0.21

Water-stressed

EL qEL4s 4 145.17-145.64 237.35-237.63 3.86 6.32 -0.16 -0.05

EL qEL5 5 50.98-51.93 22.89-23.46 4.26 7.02 0.2 0.02

ED qED3s 3 129.12-129.35 199.50-199.74 4.62 7.63 0.02 0.01

ED qED4s 4 135.74-136.69 197.64-197.96 5.77 9.82 -0.03 0

ED qED8s 8 65.35-66.06 119.22-121.62 3.72 6.26 0.02 0

EW qEW1s 1 76.04-76.75 66.62-68.75 5.37 10.35 12.3 9.62

KW qKW4s 4 145.17-145.64 237.35-237.63 4.1 8.05 -0.99 0.26

HKW qHKW2s 2 61.51-62.45 37.17-38.76 3.49 6.45 -0.23 -0.03

HKW qHKW7s 7 88.55-89.02 137.83-138.42 6.41 12.14 0.3 0.04

a EL: ear length, ED: ear diameter, EW: ear weight, KW: kernel weight per ear, HKW: hundred kernel weight. 

b The physical posotion referred to B73_RefGen_v3. 

c Logarithm of odds for each QTL. 

d Phenotypic variation explained. 

e Positive value indicated the additive effect was derived from H082183. 

f Positive value indicated the dominant effect was derived from H082183

Table 2 - QTLs identified by the joint-environment analysis
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QTL detection for the five yield-related traits 
based on single environment analysis

For the five yield-related traits, a total of 133 QTLs were 
detected based on the analysis of single environment, 
including 35 QTLs for EL, 41 QTLs for ED, 18 QTLs for 
EW, 24 QTLs for HKW, and 15 QTLs for KW, with the 
total explained phenotypic variation varying from 0.94 
% to 26.64 % (Table S1). The 133 QTLs were located on 
10 maize chromosomes. 

With regard to EL, thirty-five QTLs were found on the 
ten chromosomes across the ten environments. The 
interval length for these QTLs varied from 0.03 Mb 
on Chr. 1 to 6.66 Mb on Chr. 9, whereas the ranges 
of LOD and PVE were 3.31-15.98, and 2.50-17.66%, 
respectively. 

For ED, forty-one QTLs were found out on the 
all chromosomes except Chr. 6 and Chr. 7 in all 
environments except for Dingxiang of Shanxi. The 
interval length of these QTLs ranged from 0.02 Mb on 
Chr. 5 to 5.35 Mb on Chr. 8, while the LOD range was 
3.43-13.55 and PVE range was 2.83-17.99%. 

Concerning to EW, eighteen QTLs were found on five 
chromosomes (1, 3, 4, 8 and 10). The interval length of 
these QTLs varied from 0.06 Mb to 5.85 Mb on Chr. 4 
and Chr. 1, respectively, whilst the range of LOD was 
3.44-6.37 and the range of PVE was 1.04-12.3 %.

Respecting KW, fifteen QTLs were found on 
chromosomes 1, 3, 4, 8 and 10 (Table S1). The range 
of the interval length was 0.09-2.71 Mb, whereas the 
ranges of LOD and PVE were 3.26-5.25 and 0.94-
9.61%, respectively. 

As for HKW, twenty-four QTLs were found on all the 
10 chromosomes except for Chr. 4 and Chr. 6. The 
range of the interval length was 0.12-4.15 Mb, whereas 
the LOD and PVE ranges were 3.28-49.01 and 1.77-

26.64%, respectively.

QTL detection for the five yield-related traits 
based on joint environment analysis

Based on the joint QTL analysis across the four well-
watered environments, eight significant EL QTLs were 
identified on six chromosomes (1, 3, 5, 7, 8 and 10) 
(Table 2). The LOD range was 4.3-19.28 and the range 
of PVE was 3.47-18.11 %. Eight ED QTLs were identified 
on five chromosomes (1, 3, 4, 5 and 8) where the range 
of LOD was 3.83-8.89 and the PVE range was from 3.97 
to 12.26 %. One QTL for EW was identified on Chr. 
8. Two KW QTLs were identified on chromosomes 8 
and 10. The LOD and PVE ranges were 3.5-4.11% and 
6.55-8.26%, respectively. Six QTLs for HKW were found 
on five chromosomes (1, 2, 4, 7 and 9). LOD and PVE 
ranges were 3.64-19.34 and 4.23-26.89%, respectively.

The joint QTL analysis across the six water-stressed 
environments was also conducted (Table 2). Three EL 
QTLs were identified on three chromosomes (4, 5 and 
10), and the LOD range was 3.86-7.42 and the PVE 
range was 6.32-12.71%. Whereas four ED QTLs were 
identified on four chromosomes (1, 3, 4 and 8) and the 
LOD and PVE ranges were 3.72-7.51 and 6.26-12.78%, 
respectively. One QTL for EW was identified on Chr. 
1. Also, one QTL was identified for KW on Chr. 4. Two 
QTLs for HKW were detected on Chr. 2 and Chr. 7.

There was one QTL (qEL5) (Figure 2A) that could stably 
be detected under well-watered and water-stressed 
environments. qEL5 had LOD of 4.42 and explained 
3.59% of phenotypic variation under well-watered 
environments, and had LOD of 4.26 and explained 
7.02% of phenotypic variation under water-stressed 
environments.

Based on joint QTL analysis across the four well-watered 
environments and the six water-stressed environments, 

Fig. 2 - The consensus and pleiotropic QTLs. (A) The consensus QTL on Chr. 5 controlled EL in both well-watered and water-stressed 
conditions. (B) The pleiotropic QTL on Chr. 8 controlled ED, EW and KW in well-watered conditions. (C) The pleiotropic QTL on Chr. 4 
controlled EL and KW in water-stressed conditions.
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two pleiotropic loci were identified under both well-
watered and water-stressed conditions, respectively. 
One genomic region harboring qED8, qEW8 and qKW8, 
which were located in bin 8.05 and detected under 
well-watered environments, had a pleiotropic effect on 
ED, EW and KW (Figure 2B). The other genomic region 
harboring qEL4s and qKW4s (Figure 2C) which were 
located in bin 4.1 and detected under water-stressed 
environments, had a pleiotropic effect on EL and KW.

Detection of epistatic effects for the traits

	 A total of 281 pairs of epistatic interaction loci were 
found based on single environment analysis (Table S2). 
Moreover, 18 and 18 pairs of epistatic interaction loci 
were found in the joint analysis across the four well 
water environments and six water stress environments, 
respectively (Table S3).

Discussion

QTL for ear traits

	 Ear length, ear diameter and ear weight are 
determined as yield-related traits and essential maize 
breeding targets (Hallauer and Miranda, 1988). 
Therefore, the genetic dissection of these traits is 
important for high yield breeding in maize. In this 
study, for ear traits, 94 QTLs were identified based 
on single environment analysis including 35 QTLs for 
EL, 41 QTLs for ED and 18 QTLs for EW (Table S1), 
while QTLs were identified based on joint environment 
analysis including nine QTLs for EL, eleven QTLs for ED 
and two QTLs for EW (Table 2). 

Among the nine QTLs for ear length identified in the 
present study (Table 2), qEL3 and qEL8 are falling into 
the intervals of MQTL-22 for kernel-related traits and 
grain yield and MQTL-58 for ear-, kernel-related traits 
and yield, respectively, described by Chen et al (2017), 
while qEL1-1 and qEL7-1 are falling into the intervals 
of mQTL1-3 for ear length and grain yield and mQTL7-
2 for ear length, respectively, described by Zhao et 
al (2018). The QTL on Chr. 10, qEL10, could explain 
18.11% of phenotypic variation with the LOD of 19.28 
and might be considered as a main-effect QTL. In fact, 
the QTL is overlapped with the intervals of qEL1-10-1 
for ear length detected by Li et al (2009), qnkw10 for 
kernel weight and qnkn10 for kernel number by Cai et al 
(2012), qcEWP2-10-1 for ear weight and qcGWP2-10-1 
for grain yield by Yang et al (2012). Thus, qEL10 might 
be worth fine mapping further.

	 Among the eleven QTLs for ear diameter identified 
in this study (Table 2), qED4-2 and qEd8s are falling 
into the intervals of MQTL-27 and MQTL-56 for ear-, 

kernel-related traits and yield, respectively, described 
by Chen et al (2017). qED1-2 and qED4s are falling into 
the intervals of mQTL1-4 and mQTL4-3 for ear weight 
and kernel weight, respectively, described by Zhao et 
al (2018). More detailed investigations are needed to 
understand the relationship between the ear size and 
the ear/kernel weight.

In the present study, the kernel weight had high 
correlation with ear traits, but low correlation with 
100-kernel weight (Figure 1). This indicated that the 
decrease of total kernel weight (grain yield per plant) 
under drought might be caused by extend of anthesis-
silking interval (ASI), inhibition of ear development and 
reduction of kernel number per plant in this biparental 
population by the cross of H082183 and Lv28, 
suggesting these traits are primary selection targets in 
maize drought tolerance improvement.

QTL for kernel traits

	 Similarly, kernel weight per ear (KW) and 100-kernel 
weight (HKW) are very essential yield-related traits in 
maize. From the single environment analysis, 39 QTLs 
including15 QTLs for KW and 24 QTLs for HKW were 
identified (Table S1). Based on the joint environment 
analysis, two QTLs for KW and six QTLs for HKW were 
detected across the well-watered environments while 
one QTL for KW and two QTLs for HKW were detected 
across the water-stressed environments (Table 2).

qHKW7, qHKW9 and qHKW7s for 100-kernel weight are 
falling into the intervals of MQTL-50 for ear-, kernel-
related traits and yield, MQTL-64 for ear-related and 
kernel-related traits and MQTL49 for kernel-related 
traits, respectively, described by Chen et al (2017). 
qHKW1-1 and qHKW2 are falling into the interval of 
mQTL1-2 for anthesis-silking interval and mQTL2-2 for 
kernel weight, ear length and grain yield, respectively, 
described by Zhao et al (2018). Particularly, qHKW2 
could explain 26.89% of phenotypic variation with the 
LOD of 19.34 and might be taken as a main-effect QTL. 
qHKW2 is overlapping with the intervals of Xew2-1 for 
ear weight and Xkw2-2 for kernel weight detected by 
Xiao et al (2005), kpr2a for kernel number by Yan et al 
(2006), qkw2-1 for kernel width by Yang et al (2016), 
qpkw2 for kernel weight by Cai et al (2012), and kgy2 for 
grain yield by Lu et al (2006). Therefore, qHKW2 might 
also be considered as an important target for fine 
mapping and maize improvement in the future.

QTLs among yield-related traits

	 Pleiotropy is the well-established phenomenon of a 
single gene affecting multiple traits, and QTL analysis 
has been used to estimate genome-wide pleiotropy 
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(Paaby and Rockman, 2013). In maize, the pleiotropy 
is also widespread. For example, Zhou et al (2015) 
identified a pleiotropic QTL (qEL7.2) on Chr. 7 for kernel 
number per row, ear length and ear weight by using an 
F2:3 population of Ye478 x SL17-1. The same group also 
found another pleiotropic QTL (qKNPR6) on Chr. 6 for 
kernel number per row, ear length, kernel weight and 
grain yield (Liu et al, 2012).

In the present study, two pleiotropic QTLs were 
identified. The first one is the QTL on Chr. 8 where 
qED8, qEW8 and qKW8 were co-located in the region 
of 144.12-144.77 Mb, thus probably simultaneously 
affecting ear diameter, ear weight and kernel weight per 
ear (Table 2). Li et al (2011) also found a QTL (qed8-1) in 
the region of 129 - 148 Mb conferring ear diameter. In 
a larger interval than this region of the pleiotropic QTL 
obtained in the present study, qkwid8 for kernel width 
(Li et al, 2013), qGPR1-8-1 for kernel number ( Li et al, 
2009), and qKR2-8-1 for kernel ration (Yang et al, 2012) 
were also identified. The second pleiotropic QTL was 
the one on Chr. 4 where qEL4s and qKW4s were detected 
across the water-stressed environments, affecting both 
of ear length and kernel weight per ear (Table 2). This 
pleiotropic QTL has overlapped the intervals of kw4 for 
kernel weight (Yan et al, 2006), kgr4 for grain yield and 
krs4 for kernel number (Lu et al, 2006). Therefore, it 
was supposed that these two pleiotropic QTLs could 
be important candidate targets for maize improvement 
and are needed to be investigated further.

QTLs for well-watered and water-stressed 
environments 

	 In the present study, it was found that fewer QTLs for 
the five yield-related traits were identified in the joint 
environment analyses across the six water-stressed 
environments than those across the four well-watered 
environments (Table 2). For example, six QTLs were 
detected for EL on 5 chromosomes (1, 3, 7, 8 and 10) 
across the four well-watered environments, but only 
two QTLs on Chr. 4 and Chr. 5 across the water-stressed 
environments. The phenomenon was also evidenced by 
previous investigations (Almeida et al, 2013; Frova et al, 
1999; Messmer et al, 2009; Nikolić et al, 2011; Nikolić 
et al, 2013; Prasanna et al, 2009; Ribaut et al, 1997; Tan 
et al, 2011; Zhao et al, 2018). The possible explanation 
is that water stress affects growth and development of 
maize plants and results in the decrease of phenotypic 
variance which is not helpful in QTL identification. 

	 It was notable that qEL5 on Chr. 5 conferring ear 
length was detected across both of the water-stressed 
environments and the well-watered environments. 
The QTL was overlapped with wqgy5 for grain yield 
found by Wei et al (2016). Interestingly, qEL5 was also 

overlapped with qED2-5-1 for ear diameter found by Li 
et al (2009). This QTL may be an important candidate 
target for detailed analysis because it seems to be an 
environment-insensitive QTL.

Epistasis

	 Epistasis plays a paramount role in the genetic 
basis of the heterosis, grain yield, and kernel-related 
traits in maize (Ma et al, 2007; Tang et al, 2010; Yan 
et al, 2006). A greater understanding of QTL by QTL 
interaction (epistasis) is decisive for MAS (Mohan et al, 
1997). In this study, 256 QTL pairs of the yield-related 
traits were detected based on individual environment 
analysis, while 36 QTL pairs were detected based on 
joint environment analysis, with multiple genetic modes 
including additive-by-additive, additive-by-dominant 
and dominant-by-dominant interactions. Peng et al 
(2011) and Yang et al (2016) also found similar results 
in their QTL studies for yield-related traits. However, 
because the epistatic analysis would be more powerful 
when larger populations are used (Carlborg and Haley, 
2004), considerable size of mapping populations in 
combination with high-density mapping markers are 
desired to clarify the epistasis of QTLs for quantitative 
traits such as yield-related traits.

Conclusions

	 Grain yield-related traits have an extremely 
complicated genetic mechanism in maize due to their 
complex genetic networks and strong genotype by 
environment interactions. In the present study, the joint-
environment analysis identified 25 yield-related QTLs 
under well-watered environment and nine QTLs under 
water-stressed environment, but only one common 
QTL for ear length was stably identified at both water 
regimes. Fortunately, two main-effect QTLs, one for ear 
length and one for 100-kernel weight were detected 
in the well-watered environments. Additionally, one 
QTL on Chr. 8 is supposed to be a pleiotropic QTL 
conferring ear diameter, ear weight and kernel weight 
per ear under well-watered environments, while one 
QTL on Chr. 4 is also probably one pleiotropic QTL 
conferring ear length and kernel weight per ear under 
water-stressed environments. These genomic regions 
could be candidate targets for further fine mapping 
and marker-assisted breeding in maize.
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