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Introduction
Maize posseses tremendous natural variation for provi-
tamin A carotenoids to exploit through plant breeding 
and is one of the model cereal crops, showing promise 
for provitamin A biofortification (Zhang et al., 2012). 
Maize has been targeted for biofortification of other 
micronutrients for decades and the efforts were largely 
successful (Vasal, 2001; Babu et al., 2005; Gupta et al., 
2009; Atlin et al., 2012 and Gupta et al., 2013).
	 The significant  variation in  carotenoid content and 
composition of maize  suggests that maize diversity 
may hold clues as to  the target genes that  could be 
manipulated by breeding or transgenics  for  improve-
ment of cereal crop provitamin A content (Harjes et al., 
2008). Efforts are underway under CIMMYT-Harvestp-
lus maize programme to biofortify maize with provita-
min A carotenoids by exploiting the natural variation 
for kernel carotenoids (Pixley et al., 2011). Maize has 
been successfully biofortified with β-carotene using 
natural variations for kernel carotenoids (Muthusamy et 
al., 2014 and Liu et al., 2015). β-carotene rich maize is 
efficacious when consumed as a staple food as com-
pared to vitamin A supplementation and commercial 
fortification; and the risks of hyper vitaminosis A from 
provitamin A rich foods are almost non-existent (Gan-
non et al., 2014).

Kernel carotenoids in maize and their significance
	As compared to rice and wheat, only the yellow kernel 
maize has significant levels of provitamin A carotenoids 
in the kernel (Buckner et al., 1990) and therefore maize 
is called as, a carotenogenic plant (Rodriguez-Amaya, 
2001). There are two distinct classes of carotenoids in 
maize, (i) Carotenes, which contain only carbon and hy-

drogen (ii) xanthophylls, which contain oxygen group 
(Van den Berg et al., 2000). 
	 The yellow maize kernel contains several carotenoid 
isoforms including, two carotenes (α-carotene and 
β-carotene) and three xanthophylls (β-cryptoxanthin, 
zeaxanthin and lutein). All yellow genotypes contain 
carotenoids, although the fraction of carotenoids 
with provitamin A activity (α-carotene, β-carotene and 
β-cryptoxanthin which can be converted to vitamin A) 
is typically small as compare to zeaxanthin and lutein 
(Muthusamy et al., 2015b). Besides their potential role 
as dietary source of vitamin A, carotenoids play diverse 
and fundamental roles viz., (i) as accessory pigment for 
photosynthesis; (ii) as protection against photo-oxida-
tion; (iii) as structural determinants in plastid pigment 
protein complexes and (iv) in attracting pollinating in-
sects etc.

Carotenoid biosynthetic pathway
Though biochemical regulation of carotenoid biosyn-
thesis in maize endosperm has yet not been fully charac-
terized, key genes encoding major structural enzymes 
have been isolated, characterized and cloned (Buckner 
et al., 1990; Buckner et al., 1996; Li et al., 1996; Sun et 
al., 1996, Tian and DellaPenna, 2001; Singh et al., 2003 
and Li et al., 2007). These genetic studies provide not 
only a better understanding of genetic control of carot-
enoids in maize grain, but the opportunity to use mark-
er assisted selection (MAS) to enhance the expression 
of the trait through breeding (Bouis and Welch, 2010). 
In higher plants carotenoid biosynthesis occurs in plas-
tids by enzymes that are encoded by nuclear gene 
and exported into the organelle post-transcriptionally 
(Cunningham and Grant, 2002; Fraser and Bramley, 
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2004 and Howitt and Pogson, 2006). The details of the 
carotenoid biosynthetic pathway are depicted in Figure 
1 based on the information provided by Aluru et al. 
(2008). 

	 Among the genes involved in the carotenoid bio-
synthesis pathway, the yellow1 (Y1) gene, also referred 
to as psy1 (phytoene synthase) plays a pivotal role by 
condensing two geranyl-geranyl pyrophosphate mol-
ecules into one molecule of phytoene (Buckner et al., 
1990 and 1996). Plants that contain phytoene syn-
thase1 gene (PSY1/Y1) produce carotenoid in both en-
dosperm and leaves. The kernel carotenoid in maize is 
determined by allelic constitution of Y1 which largely 
determines the variation of kernel colour from white to 
intense orange (Buckner et al., 1996). The Y1Y1 and 
Y1y1 alleles produces yellow kernel as a result of the 
accumulation of carotenoids, while y1y1 allele produc-
es white kernels that contains no carotenoids (Linden 
et al., 1993). Overexpression of the psy1 gene in white 
kernels leads to significant carotenoid accumulation, 
confirming the essential role of psy1 for carotenoid bio-
synthesis in maize (Zhu et al., 2008). The Y1 gene was 
mapped to chromosome 6 (bin 6.01) and was cloned by 
Robertsons’ mutator transposon tagging (Buckner et 
al., 1996). The strong influence of dosage effect of Y1 
on quantitative variation for carotenoids has been well 
documented (Palaisa et al., 2004; Wong et al., 2004; 
Chander et al., 2008a; Fu et al., 2010 and 2013).

	 The first branch point of this pathway occurs at cy-
clization of lycopene where action of lycopene beta 
cyclase (lcyB or βLCY) at both ends of linear lycopene 
produces a molecule with two β rings (Pogson et al., 

1996). Alternatively, the coactions of lycopene beta cy-
clase (lcyB) and lycopene epsilon cyclase (lcyE or εLCY) 
generate a β, ε-carotene that is a precursor to lutein. 
Relative activities of lcyB and lcyE are hypothesized to 
regulate the proportion of carotenes directed to each 
branch of this pathway (Pogson et al., 1996 and Cun-
ningham and Gantt, 2001). Studies on targeted muta-
genesis of the pink scutellum1/viviparous7 (ps1/vp7) lo-
cus in maize showed, ps1 to encode lycopene β-cyclase 
which maps to chromosome 5 (bin 5.04) is necessary for 
the accumulation of both abscisic  acid and the carot-
enoid zeaxanthin in immature maize embryos (Singh et 
al., 2003). Downregulation of lcyE reduces the ratio of 
the α-carotene branch to the β-carotene branch (Harjes 
et al., 2008). The lcyE gene has been mapped to chro-
mosome 8 (bin 8.05) near the SSR marker bnlg1599 
(Harjes et al., 2008). 
	 Another key gene in the pathway is β-carotene hy-
droxylase 1 (crtRB1; also known as, HYD3) that causes 
the hydroxylation of α-carotene and β-carotene into the 
non-provitamin A carotenoids lutein and zeaxanthin 
respectively. Hydroxylation of carotenes depletes the 
provitamin A carotenoides thereby increasing non-pro-
vitamin A xanthophylls (Matthews and Wurtzel, 2007). 

Figure 1. Carotenoid biosynthetic pathway in maize.
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To identify target genes for blocking carotene hydrox-
ylation, maize genes encoding carotene hydroxylases 
were investigated. Two structurally distinct classes of 
enzymes were found to be encoded by a total of eight 
genes in maize (Vallabhaneni and Wurtzel, 2009). Us-
ing  the  maize  diversity  core  collection produced  by  
metabolite  sorting,  it  was  possible to  pinpoint  the  
one  carotene  hydroxylase encoded  by  the Hydroxy-
lase3 (HYD3) locus, whose  transcript  levels  negatively  
correlated with  high β-carotene  levels  and  positively 
correlated with  zeaxanthin  levels. HYD3 was mapped 
to chromosome 10 (Bin 10.06) and crtRB1 alleles 
were found to be associated with reduced transcript 
expression of the gene which correlates with higher 
β-carotene concentrations in the kernel composition 
(Yan et al., 2010).  
	 The β-carotene and β-cryptoxanthin are two pre-
dominant provitamin A carotenoids in maize produced 
by β, β branch of the biosynthetic pathway, whereas the 
third common provitamin A carotenoid, α-carotene is 
produced by β, ε pathway (Figure 1). Therefore, path-
way branching and hydroxylation are the key deter-
minants in controlling provitamin A levels (Yan et al., 
2010). Concerns have been raised earlier that reducing 
the amount of carotenoids may lead to compromised 
abiotic stress tolerance in crop plants (Tan et al., 1997). 
The transcript profiling efforts for these two loci by 
Harjes et al. (2008) and Yan et al. (2010) revealed that 
the differences in expression levels were very high in 
endosperm, not very different in embryos and not at all 

different in leaves, which suggest tissue-specific regula-
tion of lcyE and crtRB1. Thus selecting for mutant allele 
of lcyE and/or crtRB1, whose expression is limited to 
endosperm is unlikely to cause any undesirable effects 
in the carotenoid metabolism of leaves or other veg-
etative tissues (Babu et al., 2013).

Bioavailability and target level of provitamin A 
carotenoids in maize
	 Bioavailability is defined as the amount of the nutri-
ent that is potentially available for absorption from a 
meal and once absorbed, thus utilizable for metabolic 
processes in the body (Welch and Graham, 2004). The 
bioconversion ratio given by the Institute of Medicine 
for dietary sources is 12:1 for β-carotene from maize 
to vitamin A (retinol) in humans. The important ques-
tion that is to be answered is, the target levels for pro-
vitamin A carotenoids in the inbreds/hybrids to meet 
Recommended Dietary Allowances (RDA). In gener-
al, to compute the target level that can be achieved 
through breeding, it is necessary to understand: (1) per 
capita consumption of the staple food; (2) retention of 
nutrients during post-harvest processing and cooking; 
(3) bioavailability and (4) intake from other foods. It is 
also important to consider the level of other nutrients 
in diet that may act as an enhancer, such as, fat/lipids, 
iron/zinc for provitamin A carotenoids (Welch and Gra-
ham, 2004). 
	 Based on the available information, 200 and 400g 
of daily maize consumption is required to provide 

Table 1. Available genetic variation for various carotenoid components (μg/g) in maize lines 

Sl 
No. Lutein Zeaxanthin β-cryptoxanthin β-carotene α-carotene PVAC* TC** Germplasm Reference

1 4.70 - 17.50 8.90 - 30.70 1.10 - 4.90 0.50 - 3.40 - - 17.90 - 51.40 US Egesel et al., 2003
2 1.33 - 32.31 0.38 - 34.88 0.00 - 6.13 0.00 - 5.81 0.00 - 2.31 0.24 - 2.80 - CIMMYT Ortiz-Monasterio et al.,2007
3 0.01 - 20.00 1.29 - 20.70 0.29 - 9.88 0.37 - 8.79 0.03 - 0.86 - 9.90 - 39.96 US Hulshof et al., 2007
4 0.10 - 18.20 0.60 - 24.50 0.40 - 5.50 0.70 - 4.70 0.00 - 1.90 1.10 - 7.80 - Africa Menkir et al., 2008
5 0.04 - 17.50 0.02 - 6.72 0.01 - 3.66 0.01 - 1.72 0.00 - 0.85 - 0.09 - 22.49 China Chander et al., 2008b
6 0.70 - 31.33 0.47 - 43.97 0.09 - 10.84 0.06 - 13.63 0.01 - 2.03 - 5.61 - 47.20 US Harjes et al., 2008
7 1.03 - 21.00 0.01 - 35.00 - - - - 1.09 - 61.10 Italy Berardo et al., 2009
8 - - - - - 1.73 - 2.30 20.50 - 26.40 Brazil Rios et al., 2009
9 - - - - - - 0.03 - 25.8 India Mishra and Singh, 2010
10 - - - - - - 0.94 - 38.25 India Das and Singh, 2012
11 - - - - - - 12.2 - 30.10 India Tiwari et al., 2012
12 1.44 - 23.27 3.23 - 97.77 0.80 - 2.66 0.40 - 18.80 - 1.22 - 19.47 - India, CIMMYT Vignesh et al., 2012a
13 0.45 -13.51 0.04 - 25.90 0.08 - 8.55 0.03 - 16.38 0.00 - 1.68 0.06 - 17.25 4.43 - 42.71 Africa, CIMMYT Azmach et al., 2013
14 - - - - - - 6.50 - 67.3 India Sivaranjani et al., 2013
15 - - - 0.00 - 4.81 - - 3.30 - 27.4 India Rashmi and Singh, 2014
16 - - - 0.23 - 7.92 - - - India Selvi et al., 2014
17 - - - - - - 0.10 - 11.40 India Vikal et al., 2014b
18 4.07 - 21.66 1.26 - 19.91 0.23 - 5.33 0.17 - 2.33 0.00 - 0.41 - 6.53 - 39.78 Italy Alfieri et al., 2014
19 - - - 1.10 - 18.80 - - - India, CIMMYT Chaudhary et al., 2015
20 1.30 - 11.30 1.70 - 20.00 0.10 - 3.30 0.00 - 1.80 - - - India Muthusamy et al., 2015a
21 - - - - - 1.52 - 9.97 - China Liu et al., 2015
22 0.36 - 15.75 0.25 - 22.76 0.06 - 4.37 0.07 - 17.41 - - - India, CIMMYT Muthusamy et al., 2015b
23 1.00 - 19.40 0.40 - 30.80 0.10 - 7.90 0.00 - 16.60 - 0.01 - 17.40 5.50 - 48.60 Africa, CIMMYT Menkir et al., 2015

PVAC * : Provitamin A carotenoids; TC ** : Total carotenoids
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250μg and 500μg retinol daily requirement for children 
and women respectively, considering only 50% reten-
tion after post-harvest processing and a 12:1 biocon-
version rate of β-carotene to retinol (Ortiz-Monasterio 
et al., 2007). Thus, 15μg/g of provitamin A in kernel 
has been set as a target level in maize biofortification 
by HarvestPlus (Bouis et al., 2011). However, the study 
conducted by Howe and Tanumihardjo (2006) to inves-
tigate the bioefficacy of provitamin A carotenoids from 
maize concluded that bioconversion of β-carotene to 
retinol was 2.8:1 and it is comparable to β-carotene 
supplementation. The discovery and confirmation of 
lower bioconversion ratio for β-carotene from maize is 
due to its association with oil in the grains which leads 
to better absorption rate. Thus, breeding for provita-
min A in high oil inbred would lead to significant effect 
on maize biofortification (Vignesh et al., 2012a).

Genetic variability for kernel carotenoids in maize 
	 Maize grain carotenoid concentrations are among 
the highest produced in cereals (Howitt and Pogson, 
2006) and exhibit considerable diversity in the com-
position of grain carotenoid profiles with respect to 
the predominant carotenoids (lutein and zeaxanthin), 
provitamin A carotenoids (α-carotene, β-carotene and 
β-cryptoxanthin) and other non-provitamin A carot-
enoids (zeinoxanthin) (Harjes et al., 2008 and Pixley et 
al., 2011). Plant breeding has been the primary focus 
of programs to enhance staple food crops with suffi-
cient levels of iron, zinc and provitamin A carotenoids 
to meet the demand of populations at risk (White and 
Broadley, 2009). The first step in breeding maize for en-
hanced carotenoid contents involves an assessment of 
variability existing in adapted germplasm. When there 
is sufficient genetic variation, breeders can use various 
breeding schemes in order to exploit the additive gene 
effects, transgressive segregation and heterosis to im-
prove the trait. 
	 Various research efforts worldwide have reported 
the existence of wide genetic variation for carotenoids 
(Egesel et al., 2003; Hulshof et al., 2007; Ortiz-Monas-
terio et al., 2007; Chander et al., 2008b; Harjes et al., 
2008; Menkir et al., 2008; Berardo et al., 2009; Rios et 
al., 2009; Mishra and Singh, 2010; Das and Singh, 2012; 
Tiwari et al., 2012; Sivaranjani et al., 2013; Azmach et 
al., 2013; Rashmi and Singh, 2014; Vikal et al., 2014; 
Selvi et al., 2014; Alfieri et al., 2014; Choudhary et al., 
2015; Muthusamy et al., 2015a and 2015b; Liu et al., 
2015 and Menkir et al., 2015). The extent of variabil-
ity of lutein, zeaxanthin, β-cryptoxanthin, β-carotene, 
α-carotene and total carotenoids along with their 
source of germplasm are presented in Table 1. 
	 The carotenoids in maize are reported to have high 

heritability (Egesel et al., 2003; Menkir et al., 2008 
and Muthusamy et al., 2015b). Genetic studies also 
show that accumulation of carotenoids in maize grain 
is quantitatively inherited (Islam et al., 2004; Wong et 
al., 2004 and Kandianis et al., 2013). Preponderance of 
additive genetic variance for carotenoids in maize fur-
ther offers possibility of higher response to selection 
in developing carotenoid rich maize genotypes (Senete 
et al., 2011; Suwarno et al., 2014 and Muthusamy et 
al., 2015b). Many reports have also suggested that the 
influence G × E interaction is very less and the carot-
enoids are stable across locations (Menkir et al., 2008 
and Muthusamy et al., 2015b). Thus, breeding maize 
for increased levels of provitamin A carotenoids would 
be an economical and efficient way to address VAD, 
especially in the developing world (Yan et al., 2010 and 
Zhang et al., 2012).

Native genetic system for provitamin A enrichment 
in maize
	 The eight candidate genes y1, zds1, lcyE, crtRB3, 
lut1, crtRB1, zep1,and ccd1 are all in chromosome 
regions associated with QTL for carotenoids (Wong 
et al., 2004; Chander et al., 2008a; Zhou et al., 2012; 
Chandler et al., 2013 and Kandianis et al., 2013). Six of 
eight genes were also associated with QTL for intensity 
of orange color, crtRB3 and lut1 being the exceptions 
(Chandler et al., 2013). A darker orange color is asso-
ciated with higher total carotenoids, particularly lutein 
and zeaxanthin in maize (Pfeiffer and McClafferty, 2007 
and Burt et al., 2011).
	 Among the genes involved in the carotenoid bio-
synthesis pathway, psy1 located on chromosome 6, 
plays a pivotal role by condensing two geranyl-geranyl 
pyrophosphate molecules into one molecule of phy-
toene (Buckner et al., 1990). The first branching point 
of the pathway is the cyclization of lycopene: lycopene-
ε-cyclase (lcyE) gene located on chromosome 8, con-
verts more lycopene to the β, ε branch, which produces 
α-carotene and lutein (Harjes et al., 2008). Another key 
gene, β-carotene hydroxylase (crtRB1) present on chro-
mosome 10 causes hydroxylation of α and β-carotene 
into non-provitamin A carotenoids, viz., lutein and zea-
xanthin, respectively (Yan et al., 2010). 
	 Using allele mining strategy, four natural lcyE poly-
morphisms, viz., lcyE 5’TE (Transposable Element; in 
5’-untranslated region - UTR), lcyE SNP216 (in exon 1), 
lcyE SNP2238 (in intron 4) and lcyE 3’InDel (in 3’-UTR) 
were identified, of which, the favourable allele of lcyE 
5’TE causes more increase in provitamin A in the endo-
sperm (Harjes et al., 2008). Yan et al. (2010) through as-
sociation mapping approach, detected three polymor-
phisms, viz., 5’TE (in the 5’-UTR), InDel4 (in the coding 
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region) and 3’TE (spanning the sixth exon and 3’-UTR) 
in crtRB1 that are significantly associated with conver-
sion of β-carotene to β-cryptoxanthin and zeaxanthin 
in maize kernels and thus it has a significant impact on 
variation for β-carotene concentration in endosperm 
(Fu et al., 2013). 
	 Yan et al. (2010) found that provitamin A concen-
tration of haplotypes with crtRB1-5’TE and crtRB1-3’TE 
favorable alleles were 5.2 fold higher than those of oth-
er haplotypes. According to Azmach et al. (2013) two 
functional markers of crtRB1 (i.e. 5’TE and 3’TE mark-
ers) are in linkage disequilibrium and display consistent 
and strong effect on provitamin A carotenoid contents 
of the inbred lines. Babu et al. (2013) further reported 
that crtRB1-3’TE favorable allele alone causes two to 
ten fold variation in the β-carotene concentration irre-
spective of the genetic constitution of lcyE and similar 
results were also reported by Muthusamy et al. (2014). 
	 The favorable allele of crtRB1 3’TE with reduced 
transcript expression causes enhanced accumulation 
of β-carotene. Transcript expression of these two key 
genes (crtRB1 and lcyE) is tissue specific; where the dif-
ference in expression of wild and mutant alleles is very 
high in endosperm, while it is not much in embryos and 
similar in leaves (Babu et al., 2013). PCR based co-dom-
inant functional markers have been designed for both 
lcyE and crtRB1 based polymorphisms (Table 2)  which 
can pave way for rapid improvement of provitamin A 
in maize through MAS (Babu et al., 2013).  Since these 
favorable alleles are reported to cause higher accumu-
lation of β-carotene to other carotenoids, identification 
of genotypes with the favorable allele of these two key 
genes thus can help in identification of provitamin A 
rich genotypes without intensive HPLC assay (Vignesh 
et al., 2012a; Dhyaneswaran, 2012; Babu et al., 2013; 
Muthusamy et al., 2014 and 2015a; Sagare et al., 2015a 
and 2015b). Vignesh et al. (2012a) reported very low 

frequency of favorable allele for both lcyE (3.38%) and 
crtRB1 (3.90%) while screening large set of maize in-
breds in India. Similar results of nil to low frequency of 
the favorable alleles were also reported (Rashmi and 
Singh, 2014; Selvi et al., 2014 and Vikal et al., 2014). 
	 Inbreds bred under the CIMMYT-HarvestPlus pro-
gramme possess ~15 µg/g of β-carotene (Vignesh et 
al., 2012a). Interestingly, the Indian genotypes with 
the favorable allele of these genes were quite low in 
β-carotene, in contrast to the CIMMYT-HarvestPlus 
genotypes. This phenotypic variation could be attrib-
uted to the effect of the genetic background as the 
concentration of β-carotene is regulated by various 
genes other than lcyE and crtRB1 in the carotenoid bio-
synthesis pathway. This could also be attributed to the 
presence of nucleotide variation within the favorable 
allele thereby leading to phenotypic variation. 
	 Vignesh et al. (2012b) identified SNPs and InDels in 
the 3’UTR region of the crtRB1 favorable allele while 
comparing a set of high and low β-carotene inbreds 
and concluded that, those SNPs and InDels can be 
used as target regions in provitamin A enrichment pro-
gramme. 
	 In genome wide association studies for various 
carotenoids Suwarno et al. (2015) identified crtRB1, 
lcyE and other key genes/genomic regions governing 
rate-critical steps in the upstream (DXS1, GPSS1 and 
GPSS2 : accumulates precursor isoprenoids) as well as 
downstream pathway (HYD5, CCD1 and ZEP1 : causes 
hydroxylation and carotenoid degradation). They also 
identified SNPs at or near all of these regions which 
may be useful target regions for carotenoid biofortifi-
cation breeding efforts in maize.
	 Brenda et al. (2014) conducted genome wide as-
sociation studies for maize grain carotenoids and re-
ported two novel genes : zep1 (zeaxanthin epoxidase) 
and lut1 associated with maize grain carotenoids. They 

Table 2. Polymorphic sites, nature of polymorphism, allelic series and sequences of functional markers of lcyE and crtRB1 genes 

Gene Polymorphic site Nature of 
polymorphism Allelic series Favourable 

allele Functional Marker sequence Reference

lcyE

lcyE-5’TE 938 bp InDel 1,2,3,4 1,4
F : 5’-AAGCATCCGACCAAAATAACAG-3’
R : 5’-GAGAGGGAGACGACGAGACAC-3’

Harjes et al. 
(2008)

lcyE-SNP 216 G-T SNP G,T G
F : 5’-GCGGCAGTGGGCGTGGAT-3’
R: 5’-TGAAGTACGGCTGCAGGACAACG-3’

lcyE-3’InDel 8 bp InDel 8,0 8
F : 5’-ACCCGTACGTCGTTCATCTC- 3′
R : 5’-ACCCTGCGTGGTCTCAAC-3’

crtRB1

crtRB1-5’TE 397/206 bp InDel 1,2,3 2
F: 5’-CTCTGTGTTAGAGCCTCTGTG-3’
R: 5’AATCCCTTTCCATGTACGC-3’

Yan et al. 
(2010)

crtRB1-InDel4 12 bp InDel 12,0 12
F: 5’ACCGTCACGTGCTTCGTGCC-3’
R : 5’CTTCCGCGCCTCCTTCTC-3’

crtRB1-3’TE 325/1250 bp InDel 1,2,3 1

F :  5’-ACACCACATGGACAAGTTCG-3’
R1:  5’-ACACTCTGGCCCATGAACAC-3’
R2: 5’- ACAGCAATACAGGGGACCAG-3’
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identified SNPs associated with zeaxanthin and total 
β-xanthophylls in the coding region of zep1, which fits 
well with the activity of the encoded enzyme in con-
verting zeaxanthin to violaxanthin via antheraxanthin. 
They also identified a SNP in the lut1-coding region as-
sociated with α-carotene/zeinoxanthin, zeinoxanthin/
lutein, and zeinoxanthin. This SNP is consistent with the 
enzymatic activity of lut1 in forming lutein by hydroxyl-
ation of thee ring of zeinoxanthin. 
	 In the zep1 region, QTL have been identi-
fied for levels of β-branch carotenoids, zeaxanthin, 
β-cryptoxanthin and β-carotene (Kandianis et al., 2013) 
and for degree of orange color (Chandler et al., 2013), 
a trait associated with higher levels of zeaxanthin (Pfei-
ffer and McClafferty, 2007).

Marker assisted backcross breeding for enhancing 
provitamin A 
	 Marker assisted selection (MAS) is regarded as a 
key method for increasing provitamin A concentra-
tions in maize (Prasanna et al., 2010). The effective-
ness of molecular marker polymorphisms in linking lcyE 
and crtRB1 to provitamin A concentrations has been 
verified using 26 tropical maize populations and the 
functional gene markers for high provitamin A concen-
tration have been used in MAS (Azmach et al., 2013). 
As Benchimol et al. (2005) pointed out that through a 
backcross breeding program, source genes related to 
high provitamin A concentration can be integrated into 
genotypes with elite agronomic traits of the recurrent 
parents. However, one of the major limitations is the 
long period of time required for the backcross pro-
cedure. Therefore, molecular markers are important 
tools for accelerating the recovery of recurrent parent 
genome as well as assisting in the selection of plants 
that carry a desired marker linked to high provitamin A 
concentration (Bouchez et al., 2002). Marker assisted 
backcrossing is highly suited to monitoring the degree 
of similarity of the lines to the recurrent parent.
	 Maize breeders at IARI (Indian Agricultural Research 
Institute), New Delhi successfully introgressed crtRB1 
favourable allele from CIMMYT maize lines in to sev-
en elite parental inbreds using MAS (Muthusamy et 
al., 2014). These inbreds are parents of high yielding 
commercial maize hybrids in India. The reconstituted 
hybrids developed from improved parental inbreds 
also showed enhanced kernel β-carotene as high as 
21.7µg/g compared to 2.6µg/g in the original hybrid 
(Muthusamy et al., 2014). These improved hybrids 
possessed similar grain yield potential as compared 
to original hybrids. Improved version of Vivek QPM 
hybrid-9 developed through MABB possesses high 
β-carotene coupled with higher lysine and tryptophan, 

thereby providing multi-nutrients through maize based 
diet. 
	 In China, Liu et al. (2015) successfully introgressed 
crtRB1 favourable alleles (crtRB1-5’TE-2 and crtRB1-
3’TE-1) from maize inbred Hp321-1 into QPM inbred 
lines, CM161 and CM171. The mean provitamin A con-
centration was improved from 1.60µg/g to 5.25µg/g 
in CM161 and from 1.80µg/g to 8.14µg/g in respec-
tive BC2F3 offsprings while maintaining similar QPM 
characteristics of recurrent parent. In Africa maize 
β-carotene enrichment program is at the peak and they 
have developed biofortified maize rich in tryptophan 
and lysine, Fe, Zn and β-carotene. Three maize hybrids 
from Zambia (GV662A, GV664A, GV665A), and two hy-
brids (Ife maize hyb-3, Ife maize hyb-4) from Nigeria 
(Crops Research Institute (CRI) of the Council for Sci-
entific and Industrial Research (CSIR), Honampa) were 
released that contain 6 to 8 µg/g of provitamin A (www.
harvestplus.org). At CIMMYT, MABB program is be-
ing carried out to breed tropical maize varieties with 
15µg/g β-carotene, the target level as set by HarvestP-
lus for alleviating the widespread VAD in humans (Babu 
et al., 2013).

Development of provitamin A rich maize in India us-
ing natural mutants
	 Considering the low levels of β-carotene in the 
Indian maize germplasm, CIMMYT-HarvestPlus geno-
types with favourable allele of lcyE and crtRB1 with 
high β-carotene have been used as donors in the Indian 
maize biofortification programme. Maize breeders at 
IARI successfully introgressed crtRB1 favourable allele 
in to seven elite parental inbreds, viz., VQL1, VQL2, 
V335, V345, HKI1105, HKI323 and HKI161; using MAS 
(Muthusamy et al., 2014). These inbreds are parents of 
four high yielding commercial maize hybridsin India, 
viz., Vivek QPM-9, Vivek Hybrid-27, HM-4 and HM-8. 
The improved inbreds contained kernel β-carotene 
ranging from 8.6 to 17.5µg/g; much closer to 15µg/g, 
the target level set by HarvestPlus for alleviating 
VAD. The reconstituted hybrids developed from im-
proved parental inbreds also showed enhanced kernel 
β-carotene as high as 21.7µg/g, compared to 2.6µg/g 
in the original hybrid (Muthusamy et al., 2014). These 
improved hybrids possessed similar grain yield poten-
tial as compared to original hybrids. This is the first-ev-
er demonstration of conversion of elite maize hybrids 
into β-carotene-rich version using MABB approach. 
	 MAS derived hybrid Vivek QPM-9 possesses high 
β-carotene coupled with higher lysine and tryptophan, 
thereby providing multi nutrients through maize-based 
diet. This is the first successful example of combination 
of nutrients, viz., provitamin A and QPM (Muthusamy 
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et al., 2014). The β-carotene enriched hybrid Vivek 
QPM-9 recorded a grain yield compared to the original 
hybrid Vivek QPM-9 and is presently under testing in 
the All India Coordinated Maize Improvement Project 
(Gupta et al., 2015a and 2015b). Parental lines of the 
hybrids HM-4 and HM-8 are also targeted for improve-
ment of lysine and tryptophan in a separate breeding 
programme (Hossain et al., 2014) and the efforts are on 
to combine QPM and provitamin A. 
	 MAS is being used to pyramid favourable al-
leles, viz., lcyE and crtRB1 to further enhance kernel 
β-carotene in QPM hybrids. Currently, maize breed-
ing programme at IARI, VPKAS, CSK-HPKV, PJTSAU 
(Formerly part of ANGRAU), GBPUAT and Tamil Nadu 
Agricultural University (TNAU), Coimbatore are actively 
involved in generating/selecting diverse inbreds with 
high β-carotene. A diverse set of inbreds with favour-
able alleles of lcyE and/or crtRB1 have been charac-
terized for their effective utilization in the breeding 
programme (Choudhary et al., 2014, Choudhary et al., 
2015 and Sagare et al., 2015a and 2015b).
Recent advances in development of provitamin A 
rich maize
	 The major challenge in breeding for enhanced pro-
vitamin A in maize is the loss of β-carotene during post-
harvest/processing stages (De-Moura et al., 2013). 
Since, carotenoids are highly heat labile, it is essential 
to develop biofortified maize to sustain the carotenoid 
level during the post-harvest handling and processing. 
	 Studies at CIMMYT have shown that loss of provi-
tamin A is higher at initial stages of storage and be-
comes stable after 6-8 weeks. However, degradation 
is also influenced by genetic background and few in-
breds with lesser degradation during the storage have 
been identified (De-Moura et al., 2013; Suwarno et al., 
2015). A native variant of CCD1 (carotenoid cleavage 
dioxygenase 1) that causes reduced loss of provitamin 
A during storage has been recently identified (Suwarno 
et al., 2015). Thus, research efforts need to be directed 
to develop maize genotypes that retain higher levels of 
provitamin A for a longer period of time while storage.

Transgenic approach for enrichment of provitamin A
	 Transgenic approach using over expression of crtB 
(phytoene synthase) and crtI (carotene desaturase) 
genes from Erwinia herbicola under the control of 
γ-zein promoter resulted in accumulation of 10µg/g of 
β-carotene in Hi-II maize genotype (Aluru et al., 2008). 
This result represents an important step forward in the 
development of high provitamin A maize. Subsequent-
ly, Zhu et al. (2008) and Naqvi et al. (2009) transformed 
white maize genotypes (M37W) with combination of 
five genes (psy1, crtI, lycb, bch and crtW) and achieved 

~60µg/g of β-carotene in transgenic plants having psy1 
from Zea mays and crtI (Carotene desaturase) from 
Pantoea ananatis. Despite development of transgenic 
maize lines with very high β-carotene in its endosperm, 
commercial production of β-carotene rich maize culti-
var is yet to become a reality. However, the report of 
Zhu et al. (2008) and Naqvi et al. (2009) have generated 
high hopes.

Quantification of provitamin A carotenoids
	 Provitamin A carotenoids in maize kernels may lead 
to different colors in the endosperm, varying from light 
yellow to dark orange (Weber, 1987). However, there is 
a low correlation between visual grain color and total 
carotenoids, β-carotene and β-cryptoxanthin in diverse 
inbreds and screening for high provitamin A concentra-
tion based on kernel color is not considered reliable 
(Harjes et al., 2008 and Mishra and Singh, 2010). 
	 For quantification of carotenoids spectrophotomet-
ric and chromatographic methods are used. Although 
the visible light range (400-1100 nm) is important for 
predicting carotenoid content in maize grain, calibra-
tion curves for estimating carotenoid concentrations us-
ing near infra-red reflectance spectroscopy (NIRS) have 
been successful for estimating the major carotenoids 
(lutein and zeaxanthin) and total carotenoid, but not for 
provitamin A carotenoid concentrations (Berardo et al., 
2009). There are some reports on estimation of total 
carotenoids through colorimetric methods (Mishra and 
Singh, 2010; Tiwari et al., 2012 and Sivaranjani et al., 
2013 and 2014)
	 In chromatographic methods, thin layer chromatog-
raphy (TLC), gas chromatography (GC) and high perfor-
mance liquid chromatography (HPLC) are the common-
ly used methods. TLC is not adequate for quantitative 
analysis because of the danger of degradation and 
isomerization on highly exposed plate. Carotenoids are 
particularly prone to oxidation by air when adsorbed 
on TLC plates. Additionally, it is not easy to quantita-
tively apply the sample on the plate and quantitatively 
recover the separated carotenoids from the plate for 
measurement. GC is also inappropriate because of the 
thermal liability and low volatility of carotenoids. 
	 HPLC method is widely used for measuring provi-
tamin A concentrations. But, HPLC is expensive, time 
consuming and has low throughput, limiting its use for 
routine screening in conventional maize breeding pro-
grams (Pfeiffer and McClafferty, 2007). Now days, Ultra 
performance liquid chromatography (UPLC) method is 
being used for provitamin A carotenoids estimation. 
UPLC is a very good alternative to HPLC because its 
costs for reagents are lower and throughput is three 
times that of HPLC. Neither HPLC nor UPLC enable ef-



Provitamin A biofortification

63 ~ M12

8

Maydica electronic publication - 2018

ficient and affordable analysis of the many thousands of 
samples required each year by a breeding programme 
(Babu et al., 2013). 
	 Favourable allele possessing rare genetic variation 
in crtRB1 gene is  associated  with  higher  accumulation  
of  provitamin  A carotenoids, especially β-carotene 
and selection of this allele holds immense  promise  in  
reducing  large  scale phenotypic assays (Muthusamy 
et al., 2015a). Previous studies have been reported 
a strong relation between allele1 of crtRB1-3’TE and 
β-carotene concentration in maize kernel (Pixley et  
al., 2011; Vignesh et  al., 2012a; Dhyaneswaran, 2012; 
Babu et al., 2013; Muthusamy et al., 2014 and 2015a 
and Sagare et al., 2015a and 2015b). Therefore, screen-
ing maize inbreds for favourable allele1 of crtRB1-3’TE 
(PCR based assay) is an alternative for HPLC to identify 
β-carotene rich maize inbreds.
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