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Abstract

Cereals are the only source of nutrition for one-third of the world’s population especially in developing and
underdeveloped nations of Sub-Saharan Africa and South-east Asia. Among the cereals, only the yellow maize
exhibits tremendous natural variation for provitamin A carotenoids to exploit through plant breeding and
being a carotenogenic plant, it is considered as one of the model cereal crops, showing promise for provitamin
A biofortification. This paper deals with the maize carotenid biosynthetic pathway, genetic variability for kernel
carotenoids, native genetic system for kernel carotenoids, marker assisted backcross breeding for enhancing
provitamin A, recent advances in provitamin A biofortification and quantification of provitamin A carotenoids.
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Introduction

Maize posseses tremendous natural variation for provi-
tamin A carotenoids to exploit through plant breeding
and is one of the model cereal crops, showing promise
for provitamin A biofortification (Zhang et al., 2012).
Maize has been targeted for biofortification of other
micronutrients for decades and the efforts were largely
successful (Vasal, 2001; Babu et al., 2005; Gupta et al.,
2009; Atlin et al., 2012 and Gupta et al., 2013).

The significant variation in carotenoid content and
composition of maize suggests that maize diversity
may hold clues as to the target genes that could be
manipulated by breeding or transgenics for improve-
ment of cereal crop provitamin A content (Harjes et al.,
2008). Efforts are underway under CIMMYT-Harvestp-
lus maize programme to biofortify maize with provita-
min A carotenoids by exploiting the natural variation
for kernel carotenoids (Pixley et al., 2011). Maize has
been successfully biofortified with B-carotene using
natural variations for kernel carotenoids (Muthusamy et
al., 2014 and Liu et al., 2015). p-carotene rich maize is
efficacious when consumed as a staple food as com-
pared to vitamin A supplementation and commercial
fortification; and the risks of hyper vitaminosis A from
provitamin A rich foods are almost non-existent (Gan-
non et al., 2014).

Kernel carotenoids in maize and their significance

As compared to rice and wheat, only the yellow kernel
maize has significant levels of provitamin A carotenoids
in the kernel (Buckner et al., 1990) and therefore maize
is called as, a carotenogenic plant (Rodriguez-Amaya,
2001). There are two distinct classes of carotenoids in
maize, (i) Carotenes, which contain only carbon and hy-

drogen (i) xanthophylls, which contain oxygen group
(Van den Berg et al., 2000).

The yellow maize kernel contains several carotenoid
isoforms including, two carotenes (a-carotene and
B-carotene) and three xanthophylls (B-cryptoxanthin,
zeaxanthin and lutein). All yellow genotypes contain
carotenoids, although the fraction of carotenoids
with provitamin A activity (a-carotene, B-carotene and
B-cryptoxanthin which can be converted to vitamin A)
is typically small as compare to zeaxanthin and lutein
(Muthusamy et al., 2015b). Besides their potential role
as dietary source of vitamin A, carotenoids play diverse
and fundamental roles viz., (i) as accessory pigment for
photosynthesis; (ii) as protection against photo-oxida-
tion; (iii) as structural determinants in plastid pigment
protein complexes and (iv) in attracting pollinating in-
sects etc.

Carotenoid biosynthetic pathway

Though biochemical regulation of carotenoid biosyn-
thesis in maize endosperm has yet not been fully charac-
terized, key genes encoding major structural enzymes
have been isolated, characterized and cloned (Buckner
et al., 1990; Buckner et al., 1996; Li et al., 1996; Sun et
al., 1996, Tian and DellaPenna, 2001; Singh et al., 2003
and Li et al., 2007). These genetic studies provide not
only a better understanding of genetic control of carot-
enoids in maize grain, but the opportunity to use mark-
er assisted selection (MAS) to enhance the expression
of the trait through breeding (Bouis and Welch, 2010).
In higher plants carotenoid biosynthesis occurs in plas-
tids by enzymes that are encoded by nuclear gene
and exported into the organelle post-transcriptionally
(Cunningham and Grant, 2002; Fraser and Bramley,
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2004 and Howitt and Pogson, 2006). The details of the
carotenoid biosynthetic pathway are depicted in Figure
1 based on the information provided by Aluru et al.
(2008).

Figure 1. Carotenoid biosynthetic pathway in maize.

The first branch point of this pathway occurs at cy-
clization of lycopene where action of lycopene beta
cyclase (IcyB or BLCY) at both ends of linear lycopene
produces a molecule with two B rings (Pogson et al.,
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Among the genes involved in the carotenoid bio-
synthesis pathway, the yellow1 (Y1) gene, also referred
to as psy1 (phytoene synthase) plays a pivotal role by
condensing two geranyl-geranyl pyrophosphate mol-
ecules into one molecule of phytoene (Buckner et al.,
1990 and 1996). Plants that contain phytoene syn-
thase gene (PSY1/Y1) produce carotenoid in both en-
dosperm and leaves. The kernel carotenoid in maize is
determined by allelic constitution of Y7 which largely
determines the variation of kernel colour from white to
intense orange (Buckner et al., 1996). The Y1Y1 and
Y1y1 alleles produces yellow kernel as a result of the
accumulation of carotenoids, while yTy1 allele produc-
es white kernels that contains no carotenoids (Linden
et al., 1993). Overexpression of the psy1 gene in white
kernels leads to significant carotenoid accumulation,
confirming the essential role of psy1 for carotenoid bio-
synthesis in maize (Zhu et al., 2008). The Y1 gene was
mapped to chromosome 6 (bin 6.01) and was cloned by
Robertsons’ mutator transposon tagging (Buckner et
al., 1996). The strong influence of dosage effect of Y1
on quantitative variation for carotenoids has been well
documented (Palaisa et al., 2004; Wong et al., 2004;
Chander et al., 2008a; Fu et al., 2010 and 2013).
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1996). Alternatively, the coactions of lycopene beta cy-
clase (IcyB) and lycopene epsilon cyclase (IcyE or eLCY)
generate a B, e-carotene that is a precursor to lutein.

oxylase

Zeaxanthin

Relative activities of IcyB and IcyE are hypothesized to
regulate the proportion of carotenes directed to each
branch of this pathway (Pogson et al., 1996 and Cun-
ningham and Gantt, 2001). Studies on targeted muta-
genesis of the pink scutellum1/viviparous?7 (ps1/vp7) lo-
cus in maize showed, ps1 to encode lycopene B-cyclase
which maps to chromosome 5 (bin 5.04) is necessary for
the accumulation of both abscisic acid and the carot-
enoid zeaxanthin in immature maize embryos (Singh et
al., 2003). Downregulation of IcyE reduces the ratio of
the a-carotene branch to the B-carotene branch (Harjes
et al., 2008). The IcyE gene has been mapped to chro-
mosome 8 (bin 8.05) near the SSR marker bnlg1599
(Harjes et al., 2008).

Another key gene in the pathway is p-carotene hy-
droxylase 1 (crtRB1; also known as, HYD3) that causes
the hydroxylation of a-carotene and B-carotene into the
non-provitamin A carotenoids lutein and zeaxanthin
respectively. Hydroxylation of carotenes depletes the
provitamin A carotenoides thereby increasing non-pro-
vitamin A xanthophylls (Matthews and Wurtzel, 2007).
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To identify target genes for blocking carotene hydrox-
ylation, maize genes encoding carotene hydroxylases
were investigated. Two structurally distinct classes of
enzymes were found to be encoded by a total of eight
genes in maize (Vallabhaneni and Wurtzel, 2009). Us-
ing the maize diversity core collection produced by
metabolite sorting, it was possible to pinpoint the
one carotene hydroxylase encoded by the Hydroxy-
lase3 (HYD3) locus, whose transcript levels negatively
correlated with high B-carotene levels and positively
correlated with zeaxanthin levels. HYD3 was mapped
to chromosome 10 (Bin 10.06) and crtRB1 alleles
were found to be associated with reduced transcript
expression of the gene which correlates with higher
B-carotene concentrations in the kernel composition
(Yan et al., 2010).

The B-carotene and B-cryptoxanthin are two pre-
dominant provitamin A carotenoids in maize produced
by B, B branch of the biosynthetic pathway, whereas the
third common provitamin A carotenoid, a-carotene is
produced by B, € pathway (Figure 1). Therefore, path-
way branching and hydroxylation are the key deter-
minants in controlling provitamin A levels (Yan et al.,
2010). Concerns have been raised earlier that reducing
the amount of carotenoids may lead to compromised
abiotic stress tolerance in crop plants (Tan et al., 1997).
The transcript profiling efforts for these two loci by
Harjes et al. (2008) and Yan et al. (2010) revealed that
the differences in expression levels were very high in
endosperm, not very different in embryos and not at all

different in leaves, which suggest tissue-specific regula-
tion of IcyE and crtRB1. Thus selecting for mutant allele
of lcyE and/or crtRB1, whose expression is limited to
endosperm is unlikely to cause any undesirable effects
in the carotenoid metabolism of leaves or other veg-
etative tissues (Babu et al., 2013).

Bioavailability and target level of provitamin A
carotenoids in maize

Bioavailability is defined as the amount of the nutri-
ent that is potentially available for absorption from a
meal and once absorbed, thus utilizable for metabolic
processes in the body (Welch and Graham, 2004). The
bioconversion ratio given by the Institute of Medicine
for dietary sources is 12:1 for B-carotene from maize
to vitamin A (retinol) in humans. The important ques-
tion that is to be answered is, the target levels for pro-
vitamin A carotenoids in the inbreds/hybrids to meet
Recommended Dietary Allowances (RDA). In gener-
al, to compute the target level that can be achieved
through breeding, it is necessary to understand: (1) per
capita consumption of the staple food; (2) retention of
nutrients during post-harvest processing and cooking;
(3) bioavailability and (4) intake from other foods. It is
also important to consider the level of other nutrients
in diet that may act as an enhancer, such as, fat/lipids,
iron/zinc for provitamin A carotenoids (Welch and Gra-
ham, 2004).

Based on the available information, 200 and 400g
of daily maize consumption is required to provide

Table 1. Available genetic variation for various carotenoid components (ug/g) in maize lines

sl

No. Lutein Zeaxanthin p-cryptoxanthin p-carotene a-carotene PVAC* TC** Germplasm Reference
1 470-17.50 8.90-30.70 1.10-4.90 0.50 - 3.40 - - 17.90 - 51.40 us Egesel et al., 2003
1.33-32.31 0.38-34.88 0.00-6.13 0.00-5.81 0.00-2.31 0.24-2.80 - CIMMYT Ortiz-Monasterio et al.,2007
3 0.01-20.00 1.29-20.70 0.29 -9.88 0.37-8.79 0.03-0.86 - 9.90 - 39.96 us Hulshof et al., 2007
4 0.10-18.20 0.60-24.50 0.40 - 5.50 0.70-4.70 0.00-1.90 1.10-7.80 - Africa Menkir et al., 2008
5 0.04-1750 0.02-6.72 0.01-3.66 0.01-1.72 0.00-0.85 - 0.09 - 22.49 China Chander et al., 2008b
6 0.70-31.33 0.47-43.97 0.09 - 10.84 0.06-13.63 0.01-2.03 - 5.61-47.20 us Harjes et al., 2008
7 1.03-21.00 0.01-35.00 - - - - 1.09 - 61.10 Italy Berardo et al., 2009
8 - - - - - 1.73-2.30 20.50 - 26.40 Brazil Rios et al., 2009
9 - - - - - - 0.03-25.8 India Mishra and Singh, 2010
10 - - - - - - 0.94 - 38.25 India Das and Singh, 2012
1 - - - - - - 12.2-30.10 India Tiwari et al., 2012
12 1.44-2327 3.23-97.77 0.80 - 2.66 0.40 - 18.80 - 1.22-19.47 - India, CIMMYT Vignesh et al., 2012a
13 0.45-1351 0.04-25.90 0.08 - 8.55 0.03-16.38 0.00-1.68 0.06-17.25 4.43-42.71 Africa, CIMMYT Azmach et al., 2013
14 - - - - - - 6.50-67.3 India Sivaranjani et al., 2013
15 - - - 0.00 - 4.81 - - 3.30-27.4 India Rashmi and Singh, 2014
16 - - - 0.23-7.92 - - - India Selvi et al., 2014
17 - - - - - - 0.10-11.40 India Vikal et al., 2014b
18 4.07-21.66 1.26-19.91 0.23-5.33 0.17-2.33  0.00-0.41 - 6.53-39.78 Italy Alfieri et al., 2014
19 - - - 1.10-18.80 - - - India, CIMMYT Chaudhary et al., 2015
20 1.30-11.30 1.70-20.00 0.10-3.30 0.00 - 1.80 - - - India Muthusamy et al., 2015a
21 - - - - - 1.52-9.97 - China Liu et al., 2015
22 0.36-1575 0.25-22.76 0.06 - 4.37 0.07 -17.41 - - - India, CIMMYT Muthusamy et al., 2015b
23 1.00-19.40 0.40 - 30.80 0.10-7.90 0.00 - 16.60 - 0.01-17.40 5.50 - 48.60 Africa, CIMMYT Menkir et al., 2015

PVAC * : Provitamin A carotenoids; TC **

: Total carotenoids
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250pg and 500pg retinol daily requirement for children
and women respectively, considering only 50% reten-
tion after post-harvest processing and a 12:1 biocon-
version rate of B-carotene to retinol (Ortiz-Monasterio
et al., 2007). Thus, 15pug/g of provitamin A in kernel
has been set as a target level in maize biofortification
by HarvestPlus (Bouis et al., 2011). However, the study
conducted by Howe and Tanumihardjo (2006) to inves-
tigate the bioefficacy of provitamin A carotenoids from
maize concluded that bioconversion of B-carotene to
retinol was 2.8:1 and it is comparable to B-carotene
supplementation. The discovery and confirmation of
lower bioconversion ratio for B-carotene from maize is
due to its association with oil in the grains which leads
to better absorption rate. Thus, breeding for provita-
min A in high oil inbred would lead to significant effect
on maize biofortification (Vignesh et al., 2012a).

Genetic variability for kernel carotenoids in maize

Maize grain carotenoid concentrations are among
the highest produced in cereals (Howitt and Pogson,
2006) and exhibit considerable diversity in the com-
position of grain carotenoid profiles with respect to
the predominant carotenoids (lutein and zeaxanthin),
provitamin A carotenoids (a-carotene, p-carotene and
B-cryptoxanthin) and other non-provitamin A carot-
enoids (zeinoxanthin) (Harjes et al., 2008 and Pixley et
al., 2011). Plant breeding has been the primary focus
of programs to enhance staple food crops with suffi-
cient levels of iron, zinc and provitamin A carotenoids
to meet the demand of populations at risk (White and
Broadley, 2009). The first step in breeding maize for en-
hanced carotenoid contents involves an assessment of
variability existing in adapted germplasm. When there
is sufficient genetic variation, breeders can use various
breeding schemes in order to exploit the additive gene
effects, transgressive segregation and heterosis to im-
prove the trait.

Various research efforts worldwide have reported
the existence of wide genetic variation for carotenoids
(Egesel et al., 2003; Hulshof et al., 2007; Ortiz-Monas-
terio et al., 2007; Chander et al., 2008b; Harjes et al.,
2008; Menkir et al., 2008; Berardo et al., 2009; Rios et
al., 2009; Mishra and Singh, 2010; Das and Singh, 2012;
Tiwari et al., 2012; Sivaranjani et al., 2013; Azmach et
al., 2013; Rashmi and Singh, 2014; Vikal et al., 2014;
Selvi et al., 2014; Alfieri et al., 2014; Choudhary et al.,
2015; Muthusamy et al., 2015a and 2015b; Liu et al.,
2015 and Menkir et al., 2015). The extent of variabil-
ity of lutein, zeaxanthin, B-cryptoxanthin, B-carotene,
a-carotene and total carotenoids along with their
source of germplasm are presented in Table 1.

The carotenoids in maize are reported to have high

heritability (Egesel et al., 2003; Menkir et al., 2008
and Muthusamy et al., 2015b). Genetic studies also
show that accumulation of carotenoids in maize grain
is quantitatively inherited (Islam et al., 2004; Wong et
al., 2004 and Kandianis et al., 2013). Preponderance of
additive genetic variance for carotenoids in maize fur-
ther offers possibility of higher response to selection
in developing carotenoid rich maize genotypes (Senete
et al., 2011; Suwarno et al., 2014 and Muthusamy et
al., 2015b). Many reports have also suggested that the
influence G x E interaction is very less and the carot-
enoids are stable across locations (Menkir et al., 2008
and Muthusamy et al., 2015b). Thus, breeding maize
for increased levels of provitamin A carotenoids would
be an economical and efficient way to address VAD,
especially in the developing world (Yan et al., 2010 and
Zhang et al., 2012).

Native genetic system for provitamin A enrichment
in maize

The eight candidate genes y1, zds1, IcyE, crtRB3,
lut1, crtRB1, zepl,and ccdl are all in chromosome
regions associated with QTL for carotenoids (Wong
et al., 2004; Chander et al., 2008a; Zhou et al., 2012;
Chandler et al., 2013 and Kandianis et al., 2013). Six of
eight genes were also associated with QTL for intensity
of orange color, crtRB3 and lut1 being the exceptions
(Chandler et al., 2013). A darker orange color is asso-
ciated with higher total carotenoids, particularly lutein
and zeaxanthin in maize (Pfeiffer and McClafferty, 2007
and Burt et al., 2011).

Among the genes involved in the carotenoid bio-
synthesis pathway, psy! located on chromosome 6,
plays a pivotal role by condensing two geranyl-geranyl
pyrophosphate molecules into one molecule of phy-
toene (Buckner et al., 1990). The first branching point
of the pathway is the cyclization of lycopene: lycopene-
e-cyclase (lcyE) gene located on chromosome 8, con-
verts more lycopene to the B, € branch, which produces
a-carotene and lutein (Harjes et al., 2008). Another key
gene, B-carotene hydroxylase (crtRB1) present on chro-
mosome 10 causes hydroxylation of a and B-carotene
into non-provitamin A carotenoids, viz., lutein and zea-
xanthin, respectively (Yan et al., 2010).

Using allele mining strategy, four natural IcyE poly-
morphisms, viz., IcyE 5'TE (Transposable Element; in
5’-untranslated region - UTR), lcyE SNP216 (in exon 1),
lcyE SNP2238 (in intron 4) and IcyE 3'InDel (in 3’-UTR)
were identified, of which, the favourable allele of IcyE
5'TE causes more increase in provitamin A in the endo-
sperm (Harjes et al., 2008). Yan et al. (2010) through as-
sociation mapping approach, detected three polymor-
phisms, viz., 5'TE (in the 5'-UTR), InDel4 (in the coding
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Table 2. Polymorphic sites, nature of polymorphism, allelic series and sequences of functional markers of IcyE and crtRB1 genes

Gene Polymorphic site Nature o.f Allelic series Favourable Functional Marker sequence Reference
polymorphism allele
F: 5-AAGCATCCGACCAAAATAACAG-3'
leyE-5'TE 938 bp InDel 12,34 14 R : 5-GAGAGGGAGACGACGAGACAC-3'
F:5-GCGGCAGTGGGCGTGGAT-3' Hari tal
leyE leyE-SNP 216 G-TSNP GT G R: 5-TGAAGTACGGCTGCAGGACAACG-3' a (12‘9502) ak
F:5-ACCCGTACGTCGTTCATCTC- 3
lcyE-3'InDel 8 bp InDel 8,0 8 R:5-ACCCTGCGTGGTCTCAAC-3'
F: 5-CTCTGTGTTAGAGCCTCTGTG-3'
crtRB1-5TE 397/206 bp InDel 12,3 2 R: 5’AATCCCTTTCCATGTACGC-3'
F: 5’ACCGTCACGTGCTTCGTGCC-3'
rRBI crtRB1-InDel4 12 bp InDel 12,0 12 R:5'CTTCCGCGCCTCCTTCTC-3’ Yan et al.
(2010)
F: 5-ACACCACATGGACAAGTTCG-3'
crtRBI-3TE  325/1250 bp InDel 12,3 1 RT: SEACACTCTGGCCCATGAACAC 3

R2: 5'- ACAGCAATACAGGGGACCAG-3'

region) and 3'TE (spanning the sixth exon and 3'-UTR)
in crtRB1 that are significantly associated with conver-
sion of B-carotene to B-cryptoxanthin and zeaxanthin
in maize kernels and thus it has a significant impact on
variation for B-carotene concentration in endosperm
(Fu et al., 2013).

Yan et al. (2010) found that provitamin A concen-
tration of haplotypes with crtRB1-5'TE and crtRB1-3'TE
favorable alleles were 5.2 fold higher than those of oth-
er haplotypes. According to Azmach et al. (2013) two
functional markers of crtRB1 (i.e. 5TE and 3'TE mark-
ers) are in linkage disequilibrium and display consistent
and strong effect on provitamin A carotenoid contents
of the inbred lines. Babu et al. (2013) further reported
that crtRB1-3'TE favorable allele alone causes two to
ten fold variation in the B-carotene concentration irre-
spective of the genetic constitution of IcyE and similar
results were also reported by Muthusamy et al. (2014).

The favorable allele of crtRB7 3'TE with reduced
transcript expression causes enhanced accumulation
of B-carotene. Transcript expression of these two key
genes (crtRB1 and IcyE) is tissue specific; where the dif-
ference in expression of wild and mutant alleles is very
high in endosperm, while it is not much in embryos and
similar in leaves (Babu et al., 2013). PCR based co-dom-
inant functional markers have been designed for both
lcyE and crtRB1 based polymorphisms (Table 2) which
can pave way for rapid improvement of provitamin A
in maize through MAS (Babu et al., 2013). Since these
favorable alleles are reported to cause higher accumu-
lation of B-carotene to other carotenoids, identification
of genotypes with the favorable allele of these two key
genes thus can help in identification of provitamin A
rich genotypes without intensive HPLC assay (Vignesh
et al., 2012a; Dhyaneswaran, 2012; Babu et al., 2013;
Muthusamy et al., 2014 and 2015a; Sagare et al., 2015a
and 2015b). Vignesh et al. (2012a) reported very low

frequency of favorable allele for both IcyE (3.38%) and
crtRB1 (3.90%) while screening large set of maize in-
breds in India. Similar results of nil to low frequency of
the favorable alleles were also reported (Rashmi and
Singh, 2014; Selvi et al., 2014 and Vikal et al., 2014).

Inbreds bred under the CIMMYT-HarvestPlus pro-
gramme possess ~15 pg/g of B-carotene (Vignesh et
al., 2012a). Interestingly, the Indian genotypes with
the favorable allele of these genes were quite low in
B-carotene, in contrast to the CIMMYT-HarvestPlus
genotypes. This phenotypic variation could be attrib-
uted to the effect of the genetic background as the
concentration of B-carotene is regulated by various
genes other than lcyE and crtRB1 in the carotenoid bio-
synthesis pathway. This could also be attributed to the
presence of nucleotide variation within the favorable
allele thereby leading to phenotypic variation.

Vignesh et al. (2012b) identified SNPs and InDels in
the 3'UTR region of the crtRB1 favorable allele while
comparing a set of high and low B-carotene inbreds
and concluded that, those SNPs and InDels can be
used as target regions in provitamin A enrichment pro-
gramme.

In genome wide association studies for various
carotenoids Suwarno et al. (2015) identified crtRB7,
lcyE and other key genes/genomic regions governing
rate-critical steps in the upstream (DXS1, GPSS1 and
GPSS2 : accumulates precursor isoprenoids) as well as
downstream pathway (HYD5, CCD1 and ZEP1 : causes
hydroxylation and carotenoid degradation). They also
identified SNPs at or near all of these regions which
may be useful target regions for carotenoid biofortifi-
cation breeding efforts in maize.

Brenda et al. (2014) conducted genome wide as-
sociation studies for maize grain carotenoids and re-
ported two novel genes : zep1 (zeaxanthin epoxidase)
and lut1 associated with maize grain carotenoids. They
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identified SNPs associated with zeaxanthin and total
B-xanthophylls in the coding region of zep1, which fits
well with the activity of the encoded enzyme in con-
verting zeaxanthin to violaxanthin via antheraxanthin.
They also identified a SNP in the lut7-coding region as-
sociated with a-carotene/zeinoxanthin, zeinoxanthin/
lutein, and zeinoxanthin. This SNP is consistent with the
enzymatic activity of lut1 in forming lutein by hydroxyl-
ation of thee ring of zeinoxanthin.

In the zep! region, QTL have been identi-
fied for levels of B-branch carotenoids, zeaxanthin,
B-cryptoxanthin and B-carotene (Kandianis et al., 2013)
and for degree of orange color (Chandler et al., 2013),
a trait associated with higher levels of zeaxanthin (Pfei-
ffer and McClafferty, 2007).

Marker assisted backcross breeding for enhancing
provitamin A

Marker assisted selection (MAS) is regarded as a
key method for increasing provitamin A concentra-
tions in maize (Prasanna et al., 2010). The effective-
ness of molecular marker polymorphisms in linking IcyE
and crtRB1 to provitamin A concentrations has been
verified using 26 tropical maize populations and the
functional gene markers for high provitamin A concen-
tration have been used in MAS (Azmach et al., 2013).
As Benchimol et al. (2005) pointed out that through a
backcross breeding program, source genes related to
high provitamin A concentration can be integrated into
genotypes with elite agronomic traits of the recurrent
parents. However, one of the major limitations is the
long period of time required for the backcross pro-
cedure. Therefore, molecular markers are important
tools for accelerating the recovery of recurrent parent
genome as well as assisting in the selection of plants
that carry a desired marker linked to high provitamin A
concentration (Bouchez et al., 2002). Marker assisted
backcrossing is highly suited to monitoring the degree
of similarity of the lines to the recurrent parent.

Maize breeders at IARI (Indian Agricultural Research
Institute), New Delhi successfully introgressed crtRB1
favourable allele from CIMMYT maize lines in to sev-
en elite parental inbreds using MAS (Muthusamy et
al., 2014). These inbreds are parents of high yielding
commercial maize hybrids in India. The reconstituted
hybrids developed from improved parental inbreds
also showed enhanced kernel B-carotene as high as
21.7pug/g compared to 2.6pg/g in the original hybrid
(Muthusamy et al., 2014). These improved hybrids
possessed similar grain yield potential as compared
to original hybrids. Improved version of Vivek QPM
hybrid-9 developed through MABB possesses high
B-carotene coupled with higher lysine and tryptophan,

thereby providing multi-nutrients through maize based
diet.

In China, Liu et al. (2015) successfully introgressed
crtRB1 favourable alleles (crtRB1-5'TE-2 and crtRB1-
3'TE-1) from maize inbred Hp321-1 into QPM inbred
lines, CM161 and CM171. The mean provitamin A con-
centration was improved from 1.60pg/g to 5.25pg/g
in CM161 and from 1.80ug/g to 8.14pg/g in respec-
tive BC2F3 offsprings while maintaining similar QPM
characteristics of recurrent parent. In Africa maize
B-carotene enrichment program is at the peak and they
have developed biofortified maize rich in tryptophan
and lysine, Fe, Zn and B-carotene. Three maize hybrids
from Zambia (GV662A, GV664A, GV665A), and two hy-
brids (Ife maize hyb-3, Ife maize hyb-4) from Nigeria
(Crops Research Institute (CRI) of the Council for Sci-
entific and Industrial Research (CSIR), Honampa) were
released that contain 6 to 8 pug/g of provitamin A (www.
harvestplus.org). At CIMMYT, MABB program is be-
ing carried out to breed tropical maize varieties with
15pg/g B-carotene, the target level as set by HarvestP-
lus for alleviating the widespread VAD in humans (Babu
et al., 2013).

Development of provitamin A rich maize in India us-
ing natural mutants

Considering the low levels of p-carotene in the
Indian maize germplasm, CIMMYT-HarvestPlus geno-
types with favourable allele of IcyE and crtRB1 with
high B-carotene have been used as donors in the Indian
maize biofortification programme. Maize breeders at
IARI successfully introgressed crtRB1 favourable allele
in to seven elite parental inbreds, viz., VQL1, VQL2,
V335, V345, HKI1105, HKI323 and HKI161; using MAS
(Muthusamy et al., 2014). These inbreds are parents of
four high yielding commercial maize hybridsin India,
viz., Vivek QPM-9, Vivek Hybrid-27, HM-4 and HM-8.
The improved inbreds contained kernel B-carotene
ranging from 8.6 to 17.5pg/g; much closer to 15pg/g,
the target level set by HarvestPlus for alleviating
VAD. The reconstituted hybrids developed from im-
proved parental inbreds also showed enhanced kernel
B-carotene as high as 21.7pg/g, compared to 2.6ug/g
in the original hybrid (Muthusamy et al., 2014). These
improved hybrids possessed similar grain yield poten-
tial as compared to original hybrids. This is the first-ev-
er demonstration of conversion of elite maize hybrids
into B-carotene-rich version using MABB approach.

MAS derived hybrid Vivek QPM-9 possesses high
B-carotene coupled with higher lysine and tryptophan,
thereby providing multi nutrients through maize-based
diet. This is the first successful example of combination
of nutrients, viz., provitamin A and QPM (Muthusamy
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et al., 2014). The P-carotene enriched hybrid Vivek
QPM-9 recorded a grain yield compared to the original
hybrid Vivek QPM-9 and is presently under testing in
the All India Coordinated Maize Improvement Project
(Gupta et al., 2015a and 2015b). Parental lines of the
hybrids HM-4 and HM-8 are also targeted for improve-
ment of lysine and tryptophan in a separate breeding
programme (Hossain et al., 2014) and the efforts are on
to combine QPM and provitamin A.

MAS is being used to pyramid favourable al-
leles, viz., IcyE and crtRB1 to further enhance kernel
B-carotene in QPM hybrids. Currently, maize breed-
ing programme at IARI, VPKAS, CSK-HPKV, PJTSAU
(Formerly part of ANGRAU), GBPUAT and Tamil Nadu
Agricultural University (TNAU), Coimbatore are actively
involved in generating/selecting diverse inbreds with
high B-carotene. A diverse set of inbreds with favour-
able alleles of IcyE and/or crtRB1 have been charac-
terized for their effective utilization in the breeding
programme (Choudhary et al., 2014, Choudhary et al.,
2015 and Sagare et al., 2015a and 2015b).

Recent advances in development of provitamin A
rich maize

The major challenge in breeding for enhanced pro-
vitamin A in maize is the loss of p-carotene during post-
harvest/processing stages (De-Moura et al., 2013).
Since, carotenoids are highly heat labile, it is essential
to develop biofortified maize to sustain the carotenoid
level during the post-harvest handling and processing.

Studies at CIMMYT have shown that loss of provi-
tamin A is higher at initial stages of storage and be-
comes stable after 6-8 weeks. However, degradation
is also influenced by genetic background and few in-
breds with lesser degradation during the storage have
been identified (De-Moura et al., 2013; Suwarno et al.,
2015). A native variant of CCD1 (carotenoid cleavage
dioxygenase 1) that causes reduced loss of provitamin
A during storage has been recently identified (Suwarno
et al., 2015). Thus, research efforts need to be directed
to develop maize genotypes that retain higher levels of
provitamin A for a longer period of time while storage.

Transgenic approach for enrichment of provitamin A

Transgenic approach using over expression of crtB
(phytoene synthase) and crtl (carotene desaturase)
genes from Erwinia herbicola under the control of
y-zein promoter resulted in accumulation of 10ug/g of
B-carotene in Hi-Il maize genotype (Aluru et al., 2008).
This result represents an important step forward in the
development of high provitamin A maize. Subsequent-
ly, Zhu et al. (2008) and Naqvi et al. (2009) transformed
white maize genotypes (M37W) with combination of
five genes (psy1, crtl, lycb, bch and crtW) and achieved

~60ug/g of p-carotene in transgenic plants having psy1
from Zea mays and crtl (Carotene desaturase) from
Pantoea ananatis. Despite development of transgenic
maize lines with very high B-carotene in its endosperm,
commercial production of B-carotene rich maize culti-
var is yet to become a reality. However, the report of
Zhu et al. (2008) and Naqvi et al. (2009) have generated
high hopes.

Quantification of provitamin A carotenoids

Provitamin A carotenoids in maize kernels may lead
to different colors in the endosperm, varying from light
yellow to dark orange (Weber, 1987). However, there is
a low correlation between visual grain color and total
carotenoids, p-carotene and B-cryptoxanthin in diverse
inbreds and screening for high provitamin A concentra-
tion based on kernel color is not considered reliable
(Harjes et al., 2008 and Mishra and Singh, 2010).

For quantification of carotenoids spectrophotomet-
ric and chromatographic methods are used. Although
the visible light range (400-1100 nm) is important for
predicting carotenoid content in maize grain, calibra-
tion curves for estimating carotenoid concentrations us-
ing near infra-red reflectance spectroscopy (NIRS) have
been successful for estimating the major carotenoids
(lutein and zeaxanthin) and total carotenoid, but not for
provitamin A carotenoid concentrations (Berardo et al.,
2009). There are some reports on estimation of total
carotenoids through colorimetric methods (Mishra and
Singh, 2010; Tiwari et al., 2012 and Sivaranjani et al.,
2013 and 2014)

In chromatographic methods, thin layer chromatog-
raphy (TLC), gas chromatography (GC) and high perfor-
mance liquid chromatography (HPLC) are the common-
ly used methods. TLC is not adequate for quantitative
analysis because of the danger of degradation and
isomerization on highly exposed plate. Carotenoids are
particularly prone to oxidation by air when adsorbed
on TLC plates. Additionally, it is not easy to quantita-
tively apply the sample on the plate and quantitatively
recover the separated carotenoids from the plate for
measurement. GC is also inappropriate because of the
thermal liability and low volatility of carotenoids.

HPLC method is widely used for measuring provi-
tamin A concentrations. But, HPLC is expensive, time
consuming and has low throughput, limiting its use for
routine screening in conventional maize breeding pro-
grams (Pfeiffer and McClafferty, 2007). Now days, Ultra
performance liquid chromatography (UPLC) method is
being used for provitamin A carotenoids estimation.
UPLC is a very good alternative to HPLC because its
costs for reagents are lower and throughput is three
times that of HPLC. Neither HPLC nor UPLC enable ef-
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ficient and affordable analysis of the many thousands of
samples required each year by a breeding programme
(Babu et al., 2013).

Favourable allele possessing rare genetic variation
in crtRB1 gene is associated with higher accumulation
of provitamin A carotenoids, especially B-carotene
and selection of this allele holds immense promise in
reducing large scale phenotypic assays (Muthusamy
et al., 2015a). Previous studies have been reported
a strong relation between allele1 of crtRB1-3'TE and
B-carotene concentration in maize kernel (Pixley et
al., 2011; Vignesh et al., 2012a; Dhyaneswaran, 2012;
Babu et al., 2013; Muthusamy et al., 2014 and 2015a
and Sagare et al., 2015a and 2015b). Therefore, screen-
ing maize inbreds for favourable allele1 of crtRB1-3'TE
(PCR based assay) is an alternative for HPLC to identify
B-carotene rich maize inbreds.
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