Original Paper Open Access

Can elite maize landraces help to improve forage yield and quality?
A genetic analysis

Salvador Incognito'*, Guillermo Eyhérabide?, César Lopez'

'Facultad de Ciencias Agrarias, Universidad Nacional de Lomas de Zamora, 1836, Llavallol, Buenos Aires, Argentina
2Instituto Nacional de Tecnologia Agropecuaria, EEA Pergamino, CC31, 2700, Pergamino, Argentina
*Corresponding author: E-mail: salinco-@hotmail.com

Abstract

Broadening the genetic base of maize breeding program is a significant concern for plant breeders, since it
restricts the magnitude of genetic gain. Identification of promissory exotic elite maize (Zea mays L) germplasm
would be useful to increase the genetic variation within typically used heterotic groups and to improve the forage
yield and quality. This study is aimed to assess the genetic potential of a group of elite maize landraces to improve
forage yield and quality related traits and to broaden the genetic base of three temperate heterotic groups. Mean
values and landrace general combining ability effects (GCA) revealed that some landraces could be considered as
a valuable genetic resource to broaden the current genetic base through introgression of forage yield and quality
favorable alleles. When stover and ear dry matter yield were considered, ARZM17035 was the best landrace since
it produced the best performing landrace x inbred line crosses that also were stable across environments. Addi-
tionally, this landrace showed high GCA,. Considering quality traits, ARZM07134 was the most promising source
of favorable alleles. The use of B73 as tester in a recurrent selection scheme would be the most efficient strategy,
since both mentioned landraces crossed to B73, showed the highest yield and quality values. Additionally, evalu-
ated traits were mainly controlled by additive effects, so it is expected to obtain a positive response by selection.

Keywords: germplasm enhancement, combining ability, heterotic groups, digestibility, stover

Introduction

Germplasm selection to develop new inbred lines
is a critical step in a breeding program. New maize
hybrids are produced using a narrowed genetic base
because repeated recycling of currently used paren-
tal inbred lines. This limited genetic diversity used
within current maize germplasm may increase genet-
ic vulnerability to biotic and abiotic stresses and can
potentially limit yield selection gains in a near future
(Tallury and Goodman, 1999; Zhang et al, 2000; Yong
et al, 2012). Even though breeding programs explore
in the identification and utilization of new heterotic
patterns, only Stiff Stalk x non-Stiff Stalk has been
extensively exploited in temperate regions for grain
production. These constrains do not differ in silage
maize breeding because for a long time it was ac-
cepted that a good grain hybrid was also the most
suitable for silage (Argillier et al, 2000). Additionally,
despite several breeding companies have programs
to develop genotypes to produce silage and biofuel,
their germplasm currently used mostly corresponds
to genotypes chosen for grain maize breeding (Bar-
riere et al, 2010).

The introgression of useful genetic variability from
exotic germplasm (term that includes germplasm not
commonly used in breeding programs) can be an im-
portant strategy to broaden the genetic variability to
improve maize forage yield and quality. This strategy
has been proposed by several authors for different

traits (Eberhart, 1971; Oyerbides-Garcia et al, 1985;
Hallauer and Miranda, 1988; Holley and Goodman,
1988; Mungoma and Pollak, 1988; Iglesias and Hal-
lauer, 1989; Pollak et al, 1991; Michelini and Hallauer,
1993; Holland and Goodman, 1995; Holland et al,
1996; Rodrigues and Chaves, 2002; Carena, 2005;
Soengas et al, 2006; Delucchi et al, 2012; Yong et
al, 2013a, b; Incognito et al, 2013; Vancetovic et al,
2015). Thus, landraces could contribute with desir-
able favorable alleles absent in elite germplasm used
to develop elite inbred lines (Cohen and Galinat,
1984).

Landraces frequently exhibit a poor agronomic
performance relative to improved and elite germ-
plasm, especially if landraces are evaluated in envi-
ronments different to their geographic origin. Since
the final product in maize breeding programs are elite
hybrids, evaluation of the landrace performances in
crosses with inbred lines to estimate combining abili-
ties is a useful tool to perform a preliminary selec-
tion for the most promising germplasm to establish
new heterotic patterns (Beck et al, 1991). Although it
is known the potential of maize landraces as source
of favorable alleles to improve grain yield and qual-
ity and others agronomics traits, very little informa-
tion exists about their contribution to enhance forage
yield and quality.

In a research project similar to the Latin Ameri-
can Maize Project (LAMP, 1991; Salhuana et al, 1991)
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the Instituto Nacional de Tecnologia Agropecuaria
(INTA) in Argentina, evaluated 300 Argentine acces-
sions crossed with four broad-based testers of local
and exotic origin, and selected the best yielding 10%
(thirty landraces) (Delucchi et al, 2012). Subsequent-
ly, we chose eight of these elite landraces based on
plant height, racial form, and geographical origin to
determine their potential to improve maize forage
yield and quality. The objectives of this study were: (i)
to evaluate the performance for forage yield and qual-
ity related traits of the eight elite maize landraces in
crosses with inbred lines of different heterotic groups
and (ii) to determine their genetic potential as sources
of germplasm to develop forage maize hybrids.

Materials and Methods

Genetic materials

Eight elite maize landraces (ARZMO010783,
ARZM02023,ARZM03014,ARZM04062,ARZM06020,
ARZMO07134, ARZM14103, ARZM17035) belonging
to the Germplasm Bank at INTA Pergamino were
included in this research. These landraces were se-
lected, as already mentioned, based on their plant
height, racial form, and geographical diversity. A de-
tailed description of these landraces can be found in
Incognito et al (2013). These landraces were crossed
to four inbred lines (B73, Mo17, LP122-2, and LP612)
representative of different heterotic groups tipically
used to form heterotic patterns commonly employed
in temperate regions (Stiff Stalk Synthetic x Lancast-
er Sure Crop, Stiff Stalk Synthetic x Argentine Orange
Flint, and Lancaster Sure Crop x Argentine Orange
Flint). We have previously found that the crosses be-
tween these inbred lines showed forage yields com-
parable to commercial checks. B73 and Mo17 are
inbred lines developed at lowa State University and
University of Missouri, respectively. B73 was used
in many genetic, molecular, and genomic studies
(Schnable et al, 2009; Yu et al, 2008), is highly related
to many more recent derived inbreeds, and is the
common parent of the Nested Association Mapping
Population (McMullen et al, 2009). LP612 and LP122-
2 are Argentine Orange Flint inbred lines developed
by the INTA maize breeding program. LP612 was
derived from a cross between P465, a public inbred
line, and sources of resistance to corn rust (Puccinia
sorghi) from North America followed by selection and
recombination between the more tolerant families.
LP122-2 was derived from the cross between LP122
and L196. No relationship was detected between
LP612 and LP122-2 inbred lines (Olmos et al, 2014).
The eight selected landraces were crossed to the four
inbred parents using four isolation blocks in which,
alternatively one inbred line was used as the male to
pollinate at least 150 detasseled female parent plants
of each landrace. Ears were harvested from these
plants and equal amounts of seeds from each bulked
to represent each landrace x line crosses. Commer-
cial hybrid checks were Dekalb 747 MGRR2, SPS

Megasilo CL, and San Pedro Florentino S10, which
were originally developed for grain production, but
are widely used for forage production in Argentina.

Experimental Procedures and Data Collection

The eight elite landraces, thirty two landraces
x inbred crosses, six inbred x inbred crosses, and
three commercial checks were evaluated during
2008/2009 (hereafter 2008) and 2009/2010 (hereafter
2009) growing seasons at two locations representa-
tive of the Buenos Aires Province dairy region. These
locations were Virrey del Pino (VP) (34°49’S;58°43°0)
and Vicente Casares (VC) (35°18’S;58°56’0). The
year x location combinations will be called hereafter
as: VP2008, VP2009, VC2008, and VC2009. In both
locations, soil is classified as typical Argiudoll. Field
experiments were conducted following a random-
ized complete block design with three replications.
Experimental units consisted in two rows planted
0.50 m appart and 5 m long. Plots were overplanted
and latter thinned to a final plant density of 80,000
plants ha'. Standard cultural practices were used.
The whole plot were hand-harvested when the ker-
nel milk line reached 2/3 of the way down the kernels
at the center of the ear (Hunt et al, 1989). Measures
of fresh weights of both vegetative and reproductive
structures were determined. A representative sample
from ten random plants per plot was dried with forced
air at 55°C for 7 d, to estimate dry matter percent-
age and to perform the laboratory analyses. Dried
samples were milled to a 1 mm particle size. On all
samples, near infrared spectra were collected (NIRS
6500, NIRSystem Inc, Silver Spring, MD) between
1,100 to 2,500 nm at every 2 nm. Ear (iDE) and stover
(iDS) in vitro dry matter digestibility were predicted by
NIRS equations, calibrated by the enzymatic method
(Gabrielsen, 1986). Stover dry matter yield (SY) in
megagrams per hectare, ear dry matter yield (EY) in
megagrams per hectare, iDS in percentage, and iDE
in percentage were assessed in each experiment.

Statistical Analysis

Data were analyzed using a mixed model where
blocks, environment (location x year combination)
and genotype x environment interaction were con-
sidered random effects, and genotypes fixed effects.
Proc MIXED from SAS statistical package (SAS Insti-
tute, 2009) was used for the analysis. Excluding com-
mercial checks and inbred x inbred crosses, mean
square corresponding to genotypes was partitioned
following a Partial Diallel design, in order to estimate
general combining ability for each group of parents
[landraces (GCA) and inbred lines (GCA)] and specif-
ic combining ability for the interaction between them
(SCAIi). The estimation of combining ability across
environments was performed according to the fol-
lowing model:

Yip =t e +0(€), + 8+ 8 + s, + 8ey + 8l + s€y + €y

where Y, _is the value of the crosses of the landrace
I, the inbred line i, B™" block within E" environment; p

61 ~ M25

Maydica electronic publication - 2016



breeding potential of maize landraces

is the grand mean; e; is the average effect of the E"
environment; b(e) . is the effect of the B™ block within
Et environment; g, is the GCA effect common to all
crosses of I'" landrace; g, is the GCA common effect
to all crosses of the i inbred line, and S is the SCA
effect common to all crosses produced by mating the
I landrace with the i inbred line. ge. and ge_ are
interaction between GCA effects and environments,
and se,. is the interaction between SCA effects and
environments. ¢, is the random experimental error.
When GCA or SCA sources of variation were signifi-
cant in the analysis of variance, individual landrace
and inbred GCA effects and SCA of each cross were
tested for significance by calculating a two-tailed t
tests, where t=g/SEGCA or g/SEGCA, and s /SES-
CA,. SEGCA,, SEGCA, and SESCA, are the standard
errors for combining ability effects that were estimat-
ed according to Singh and Chaudary (1977). Com-
bining ability relative indexes (CARI) to evaluate the
importance of GCA and SCA for landraces and inbred
parents were calculated based on the following equa-
tions modified from Baker (1978):

CARI, =2k, 1 (2kecy, + ksea,)
CARI, = 2k62;CA,. / (2kéCA, + kSZCA,,.)

in which K, and K, are the quadratic form
(analogous to a variance component but referring to a
fixed model) from GCA, and GCA, effects and K, is
the quadratic form of SCA, effects since total genetic
variation of single-cross progeny is equal to twice
GCA component plus the SCA component. k? were

computed as:

2en = (MSge, — MSiges, JBXEXN,)!
k(2;CA,. = (MSGCA’_ — MS(GCA,-M))(bXEXNI )—1
20, = (MSge, —MSe,  YbXE)!

where MSGCA|’ MSGCAi’ MSSCA“’ MS(GGA|Xe)’ MS(GCA»X \
and MS(SCAan> are mean squares of GCA, GCA, Sdﬂ”
and their corresponding interactions with the envi-
ronment, respectively. b, E, N,, and N, are number of
bloks or repetitions (in complete blocks design), en-
vironments, landraces, and inbred lines, respectively.
We used the approach used by Bertoia (2001) that
proposed that four results are possible from CARI’s
equations. When GCA and SCA effects are significant,
CARI values range from zero to one and thus values
closer to one indicate that GCA effects are more im-
portant than SCA effects, indicating that a specific
hybrid’s performance is highly predictable based on
GCA. The other possibilities are CARI values equal to
zero when GCA effects are non significant or equal to
one, when SCA effects are non significant, or when
both GCA and SCA effects, are non significant. In ad-
dition, we considered that when the interaction be-
tween GCA and SCA with the environment is higher
than their main effects, k? is zero because is not pos-
sible to obtain negative estimations of variance. Also
combining ability analysis was done and plotted for
each environment separately when genotype x en-
vironment interaction was significant for the studied
traits. This analysis allowed the inspection of the
consistency of GCA estimates across environments.
The combining ability analyses were performed with
Genes Software (Aplicativo computacional em Gené-
tica e Estadistica Experimental — www.ufv.br/dbg/
genes/genes.htm).

Table 1 - Mean squares of stover dry matter yield (SY), ear dry matter yield (EY) (Mg ha™), in vitro digestibility of stover dry
matter (iDS) and in vitro digestibility of ear dry matter (iDE) (%) from combined analysis of variance including eight maize land-
races, 32 maize landrace X inbred crosses, six inbred X inbred crosses and three commercial checks, across four environ-
ments. The ability to predict hybrid performance based on landrace and inbred line GCA values is measured by Combining

ability relative indexes (CARI, and CARI, respectively).

Mean Squares

Source of variation Df SY EY iDS iDE
Environment (E) 3 879.62** 1391.06** 1116.37** 826.03**
Blocks/E 8 4.35 2.34 15.82 12.83
Genotypes (G) 48 16.34** 29.47** 12.54t 16.61**
Crosses 31 15.04** 9.45** 8.09* 9.48**
GCA‘ 7 43.27** 15.48** 7.851 8.58**
GCA 3 6.17 18.39 29.731 56.21**
SCA, 21 6.90 6.17** 5.08 3.11

G X E 144 6.15%* 4.47** 8.75** 3.51**
Crosses x E 93 6.20** 3.28** 5.01 2.50
GCA x E 21 9.80** 2.41** 3.87 1.63
GCA x E 9 8.82** 9.23** 8.84* 8.81**
SCA, X E 63 4.62** 2.71** 4.84 1.89
Pooled error 384 2.21 1.00 4.65 1.93
CAR], 1 0.65 1 1

CARI, 1 0 1 1

1,*,** significant at the 0.1, 0.05, and 0.01 probability level, respectively.
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Table 2 - Means of stover dry matter yield (Mg ha) of eight landraces, 32 maize landrace X inbred crosses, six inbred x in-
bred crosses and three commercial checks, and estimates of general combining ability for landraces (GCA) and inbred lines

(GCA) across four environments.

Means' GCA

(MG ha) (MG ha')
Genotypes Landrace x inbred crosses
Landraces Landraces per se B73 LP122-2 LP612 Mo17
ARZMO01073 58 7.3 7.9 9.3 6.5 -0.9**
ARZM02023 6.2 7.5 6.6 71 6.9 -1.6%*
ARZMO03014 9.7 8.3 10.1 8.8 8.8 0.3
ARZMO04062 8.9 10.3 9.2 9.8 9.4 1.0%*
ARZM06020 8.3 10.6 9.8 8.8 8.7 0.8**
ARZMO07134 8.8 8.1 7.5 8.3 9 -0.4*
ARZM14103 8.9 9.4 8.2 8.6 8.5 -0.01
ARZM17035 8.2 10.6 9.8 8.6 9.2 0.9**
Inbred lines inbred x inbred crosses GCA
B73 9.6 9.4 8.3 0.3
LP122-2 10.9 8.7 -0.03
LP612 9.7 -0.01
Mo17 -0.3
Checks Dekalb 747 MGRR2 San Pedro Florentino S10 SPS Megasilo CL

9.4

10.3

9.2

LSD (0.05) = 1.19 Mg ha.

*, ** gignificant at the 0.05, and 0.01 probability level, respectively.

Results

Genotypes, Crosses, and GCA, varied significant-
ly for all traits, whereas GCA, only differed for digest-
ibility traits and SCA for EY (Table 1). The interaction
G x E and GCA, x E was significant for all traits but
Crosses x E, GCA x E and SCA, x E only showed
differences for yield traits. We observed for all traits
that CARI, and CARI values (except to CARI, for EY)
were close or equal to one, indicating that GCA is
useful to identify the best landrace parents based on
cross performance with a single representative tes-
ter. By contrast, CARI, value for EY was equal to zero,
indicating that SCA is very important for this trait and
that the evaluations in crosses with multiple testers
will be required to identify superior hybrids (Hallauer
and Miranda, 1988).

Stover Yield

Seven landraces x inbred line crosses and one
per se landrace showed mean values that did not dif-
fer significantly from the highest yielding genotype
(LP122-2 x LP612). The mean value of the two highest
yielding landrace x line crosses (ARZM06020 x B73
and ARZM17035 x B73) exceeded significantly the
second highest yielding commercial check (Dekalb
747TMGRR2) (Table 2). Crosses with higher SY were
those produced by ARZM04062, ARZM06020, and
ARZM17035 using B73 and LP122-2 as testers,
which also showed the highest GCA, effects across
environments (Table 2). Additionally, GCA, values of
these landraces for each environment were signifi-
cantly positive or positive but not different from zero
(Figure 1A). Although GCA, effects did not differ sig-
nificantly, it is important to note that B73 was the only
inbred parent that showed positive value of GCA..

Ear yield

As expected, the commercial check selected for
their high grain yield potential, DK 747MGRR2, was
the highest yielding genotype for EY but interestingly
a landrace x inbred cross, ARZM17035 x B73, did
not differ from the five best inbred x inbred crosses.
Three landrace x inbred crosses exceeded signifi-
cantly San Pedro Florentino S10 and SPS Megasilo
CL hybrid checks (Table 3). Additionally, EY of other
ten landrace x inbred crosses were within one LSD
with the two checks mentioned above. Several land-
race parents that produced the highest yielding land-
race x inbred crosses for SY also showed the highest
EY crossed by B73 and both flint tester.

ARZMO03014, ARZM14103 and ARZM17035,
showed positive and significant GCAI values across
environment, whereas ARZM04062 and ARZM06020
had GCA, values positive but not significantly dif-
ferent from zero (Table 3). According to the results
obtained from the diallel analysis for each tested en-
vironments, (Figure 1B), landrace parents exhibited
significantly positive GCA, values for all environments
with the exception of ARZM17035 in VP2008 and
ARZMO03014 in VC2008 that had GCA, values that did
not differ from zero. All testers except Mo17, showed
the capacity to increase EY although the GCA, ef-
fects were not significant. Seven landrace x inbred
crosses exhibited significantly positive SCA, values
(data not shown). ARZM17035 was the landrace par-
ent that combined the best performing crosses with
high GCA,. Additionallly, ARZM17035 x B73 showed
one of the highest SCA, values. Also, we observed
that SCA, values for this landrace x inbred cross were
significantly positive for all tested environments with
the exception of VP2008 (data not shown). We also
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Figure 1 - Landrace general combining ability (GCAI) for stover (A) and ear dry matter yield (B) in (Mg ha™) for Virrey del Pino
2008-2009 (VP2008) and 2009-2010 (VP2009), Vicente Casares 2008-2009 (VC2008), and 2009-2010 (VC2009), and across en-
vironments (AE). Full symbols indicate that GCA, values not differ from zero at the 0.05 probability level for individual and across
environments. Empty symbols indicate that GCA, values differ from zero at the 0.05 probability level for individual and across

environments.

found that flint x flint and flint x dent inbred x inbred
crosses were the best performing genotypes, where-
as crosses between dent x dent heterotic groups did
not exhibited good performance.

in Vitro Digestibility of Stover

The iDS values across environments indicate that
six out of the eight landrace parents and eight land-
race x inbred crosses were not significantly different
from the two best commercial checks. Additionally, a
large number of landrace x inbred crosses had mean
values that did not differ from the second more di-
gestible commercial check (Table 4). As expected for
their breeding degree for grain yield and if we consid-
ered groups of genotypes, on average the decreas-
ing order for iDS was landrace parents, landrace x in-
bred crosses, inbred x inbred crosses, and the worst
performing genotype was the commercial check DK
747TMGRR2. Landrace ARZMO07134 produced the
best performing crosses followed by ARZMO06020.
Crosses using B73 as tester exhibited high iDS val-
ues while, landrace x LP122-2 crosses, showed the
lowest iDS values.

According to the diallel analysis across environ-

ments and coincidently with high mean values, the
best landrace parent to produce crosses with high
iDS was ARZMO07134, whereas ARZM03014 and
ARZMO06020 also had positive GCA, values but not
different from zero (Table 4). Three out four inbred
parents had positive GCA, values but only B73 used
as tester increased significantly the iDS across envi-
ronments. Additionally, in the analysis for each en-
vironment, this inbred parent also showed positive
and significant GCA, values in VP2008 and VC2008,
whereas in VC2009 had positive GCAI value that not
differed from zero (data not shown). LP122-2 was the
inbred parent that produced the worst performing
landrace x inbred crosses.

in Vitro Digestibility of Ear

Crosses between ARZMO07134 with both dent
testers, did not differ significantly from the two best
commercial checks and from three inbred x inbred
crosses (Table 5). Further, almost a 50% of the land-
race x inbred crosses had mean values that did not
differ from the second best commercial check. On av-
erage, the best performing landrace x inbred crosses
were produced by ARZMO07134 and ARZM14103,
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Table 3 - Means of ear dry matter yield (Mg ha) of eight maize landraces, 32 maize landrace X inbred crosses, six inbred
X inbred crosses and three commercial checks, and estimates of general combining ability for landraces (GCA) and inbred

lines (GCA) across four environments

Means? GCA

(MG ha) (MG ha')
Genotypes Landrace x inbred crosses
Landraces Landraces per se B73 LP122-2 LP612 Mo17
ARZMO01073 4.2 6 7.2 8.2 5.8 -0.52**
ARZM02023 4.2 5.3 6.8 7.5 5.6 -1.03**
ARZMO03014 5.4 7.9 8.6 7.4 6.7 0.30*
ARZMO04062 4.9 8.3 7.2 71 7 0.05
ARZM06020 5.1 8.2 7.9 6.9 6.8 0.11
ARZM07134 5.2 6.9 7.4 7.2 7.4 -0.13
ARZM14103 6.8 7.9 8.1 8.1 71 0.44**
ARZM17035 6.1 9.5 8.1 7.6 7.3 0.78**
Inbred lines inbred X inbred crosses GCA,
B73 9.8 9.2 7.7 0.2
LP122-2 9.9 9.3 0.3
LP612 9.2 0.2
Mo17 -0.6
Checks Dekalb 747 MGRR2 San Pedro Florentino S10 SPS Megasilo CL

12.6

8.5

8.2

iLSD (0.05) = 0.8 Mg ha.

*, ** gignificant at the 0.05, and 0.01 probability level, respectively.

whereas crosses using B73 as tester showed high
iDE values.

Based on GCA, effects and coincidently with
the highest IDE mean values, ARZM07134 and
ARZM14103 landrace parents had positive and sig-
nificant iDE values across environments (Table 5).
In addition, the other landraces with exception of
ARZMO04062 and ARZMO06020, showed GCA, val-
ues that did not differ from zero. Positive GCA, val-
ues were exhibited by both dent testers but only B73
increased significantly the iDE. When the analysis is
performed by environment, B73 also showed signifi-
cantly positive GCA, values for all environments (data
not shown).

Discussion

Most maize hybrids recommended for silage pro-
duction have been based on grain yield improvement
because breeders follow the general assumption that
a good maize hybrid for grain is also good for silage.
However, this assumption should be reviewed criti-
cally because when the purpose is to obtain silage
maize hybrids, vegetative and reproductive fraction
should be taken into account since whole plant is
harvested and both fractions contribute to final dry
matter yield (Pollmer, 1978). The development of
temperate maize hybrids was largely based on the
use of the Reid x Lancaster heterotic pattern, which
leaded to an unintentional narrowing of the genetic
base in this crop. Thus, the introgression of genes
from exotic germplasm, can contribute favorable
novel alleles that are not present in elite crop gene
pool (Holland, 2004). In this way, landraces can be
a valuable genetic resource to broaden the genetic

base of elite breeding pools. In agree with this, our
results reveal that some elite landraces had a perfor-
mance comparative to commercial checks when they
were crossed by an appropriate tester.

Corn forage yield increases can be explained by
higher grain yield of new hybrids, but this trend can
change if corn forage breeding focuses their efforts
on the stover fraction (Lauer et al, 2001). The best
performing genotype for SY in our study was LP122-
2 x LP612 and we also found that flint x flint and flint
x dent inbred line crosses were the best performing
genotypes, whereas crosses between dent x dent
heterotic group did not exhibited good performance,
in agreement with Bertoia et al (2002). Coincidently,
in their research they showed that inbred lines de-
rived from Argentine landraces had more potential to
increase SY than inbred lines from the North Ameri-
can Corn Belt. Additionally, W605S silage inbred line
(developed from the Argentine breeding landrace
ARZM17026 by the USDA Germplasm Enhancement
of Maize Project) produced crosses with SY that did
not differ significantly from the best commercial hy-
brid (Lorenz et al, 2009) showing the great potential of
Argentine landraces to improve SY.

Several landraces produced good performing
crosses for SY. High forage production of acces-
sions from Argentina were also found by Nass and
Coors (2003). Argentine landraces that improved
the SY were also identified based on the fact that
this accessions exhibited crosses with high SY and
positive GCA, values (Bertoia et al, 2006). Addition-
ally, reviewing the literature to examine the relation
between stover and grain yield, Lorenz et al (2010)
indicated that the simultaneous improvement of grain
yield and SY is possible since there were no nega-
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Table 4 - Means of in vitro digestibility of stover dry matter (%) of eight maize landraces, 32 maize landrace X inbred crosses,
six inbred x inbred crosses and three commercial checks, and estimates of general combining ability for landraces (GCA)

and inbred lines (GCA) across four environments.

Means' GCA
(%) (%)

Genotypes Landrace x inbred crosses
Landraces Landraces per se B73 LP122-2 LP612 Mo17
ARZMO01073 44.3 42.6 411 42 42.2 -0.31
ARZM02023 42.2 44 41.5 41.4 42 -0.05
ARZMO03014 43.7 43.2 41 42.9 43.1 0.28
ARZM04062 43.5 42.3 40.6 42.5 41.7 -0.51*
ARZM06020 44.7 42 42.5 43 42.9 0.34
ARZMO07134 42.8 44.3 41.9 43.4 42.2 0.68*
ARZM14103 43.4 41.7 41.8 42.3 41.8 -0.35
ARZM17035 43.7 42.5 41.6 42.2 42.5 -0.08
Inbred lines inbred X inbred crosses GCA,
B73 43.4 43.2 42.4 0.56**
LP122-2 41.8 39.7 -0.76**
LP612 41.3 0.18
Mo17 0.03
Checks Dekalb 747 MGRR2 San Pedro Florentino S10 SPS Megasilo CL

41.3

43.5

43.7

LSD (0.05) = 1.11 %.

*, ** gignificant at the 0.05, and 0.01 probability level, respectively.

tive correlations reported. In the present study, we
found that ARZM17035, selected as the best source
of favorable alleles to improve SY, also would en-
hance EY due to the high GCA, showed. Moreover,
ARZM17035 x B73, that exhibited one of the highest
SCA, estimates, had EY comparable or superior to
commercial checks.

When iDS is considered, we found a general trend
in which genotypes with no breeding history like land-
races, had more digestibility than inbred x inbred
line crosses or DK 747MGRR2 commercial check.
ARZMO07134 and ARZMO06020 were considered the
best parent landraces because produced the more
digestible crosses and had positive genetic effect. Al-
though B73 was improved for grain yield, it was the
unique tester that enhances iDS. In agreement with
our results, inbred lines derived from three Argentin-
ean origins had the highest stover digestibility among
old, unusual and new accessions evaluated by Bar-
riere et al (2010).

Taking into account iDE, ARZM07134 was the
best performing landrace. Additionally, ARZM14103
also can be considered one of the best sources of fa-
vorable alleles to improve iDE. Both landrace parents
not only produced good performing crosses but also
showed high positive and significant GCA, values.
Except for ARZM04062 and ARZMO06020, none of
landrace would decrease iDE. As expected, dent tes-
ters produced the best performing crosses and ad-
ditionally, only B73, was the tester that also showed
positive and significant GCA.. This difference can be
expected due to starch degradability is higher for
dent than flint corn (Philippeau and Michalet-Doreau,
1997) since dent genotypes have a higher percent-

age of floury starch that would increase starch deg-
radation. On the other hand, flint genotypes would
decrease iDE due to a higher vitreouness (Philippeau
et al, 1999; Correa et al, 2002) like LP612 flint tester
that showed negative and significant GCA. McAllister
et al (1993) proposed that the more developed pro-
tein matrix in vitreous endosperm would inhibit starch
degradation.

In summary, we found large differences be-
tween mean values and GCA effects that revealed
that some landraces can be considered as a valu-
able genetic resource to introgress favorable alleles
for forage yield and quality, in order to broaden the
genetic base to produce silage hybrids. Our results
show that selection of the best landrace parents
depends on the target trait. Thus, when SY and EY
were considered across environments, ARZM17035
is the best landrace since it produced the best per-
forming landrace x inbred line crosses (high GCA).
Moreover, ARZM17035 showed positive and signifi-
cant GCA, estimates for three of the four tested envi-
ronments, which demonstrates that its performance
would be stable across them (GCA, in VP 2008 was
positive but non significantly different from zero). Ad-
ditionally, GCA, (mainly due to additive effects) made
a significant and important contribution for SY and
EY (CARI for SY = 1 and CAR], for EY = 0.65) similar
to the results reported by Bertoia (2001). High values
of GCA are indicative of a high frequency of favorable
alleles, suggesting good potential for the use of these
landraces as breeding materials in recurrent selection
programs (Crossa et al, 1990). The use of B73 as tes-
ter in the recurrent selection scheme will be the most
efficient strategy, since ARZM17035 x B73 showed
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Table 5 - Means of in vitro digestibility of ear dry matter (%) of eight maize landraces, 32 maize landrace x inbred crosses, six
inbred x inbred crosses and three commercial checks, and estimates of general combining ability for landraces (GCA) and
inbred lines (GCA) across four environments.

Means' GCA
(%) (%)
Genotypes Landrace x inbred crosses
Landraces Landraces per se B73 LP122-2 LP612 Mo17
ARZMO01073 79 81.3 81 80 79.9 -0.29
ARZM02023 79.5 81.3 81.5 81 80.6 0.24
ARZMO03014 78.7 81.5 81.2 79.5 81.2 0.01
ARZM04062 77.7 81.6 80.4 78.9 80.8 -0.42*
ARZM06020 79.1 81.6 80 79 81.1 -0.40*
ARZMO07134 80.9 82.6 81.6 80.3 82 0.78**
ARZM14103 79.8 82 80.7 80.7 81.5 0.33*
ARZM17035 80 81.9 80.2 79.5 80.9 -0.24
Inbred lines inbred X inbred crosses GCA,
B73 82.7 81.3 82.3 0.9**
LP122-2 80.6 83 -0.03
LP612 80.6 -1.0**
Mo17 0.14
Checks Dekalb 747 MGRR2 San Pedro Florentino S10 SPS Megasilo CL
83 81.7 82.1

LSD (0.05) = 1.1%
*, ** gignificant at the 0.05, and 0.01 probability level, respectively.

the highest SY and EY values of all crosses. Addition- sion, increasing the likelihood to develop inbred lines
ally, this cross exhibited high iDS and iDE. with high forage yield and quality. We are currently
Landrace ARZMO07134 is the most promising performing a recurrent selection scheme, deriving
source of favorable alleles when quality traits were inbred lines from ARZM17035 and ARZM07134 us-
considered. GCA, effects were predominant for iDS ing B73 as tester to improve forage yield and quality,
and iDE, indicating that additive genetic effects main- respectively.
ly determine these traits. The same breeding strategy
than for yield traits is recommended for quality traits Acknowledgements
since the best cross of this landrace were obtained The authors would like to thank Germplasm Bank
with B73 as tester. and Maize Breeding Section at INTA, Pergamino,
In agreement with our results, several previous Argentina for supplying seeds of evaluated landra-
works have demonstrated the usefulness of Argen- ces and to contribute to perform landrace x inbred
tine maize germplasm to broaden the maize genetic crosses, respectively. Also, we want to thank to Dr.
base currently used to produce silage hybrids. Ber- Luis Maximo Bertoia to contribute with laboratory
toia et al (2002) proposed that inbred lines derived analysis. This research was supported by Facultad
from Argentine germplasm such as flint lines PR4, de Ciencias Agrarias, Universidad Nacional de Lo-
ZN6, P465, and P21 can be used to improve for- mas de Zamora and Agencia Nacional de Promocion
age yield and quality of elite maize hybrids typically Cientifica y Tecnoldgica (ANPCyT, PICT 2009-0034/
composed by classic heterotic groups defined on the PRH 18).

basis of grain yield in temperate environments. Ad-
ditionally, F7103 and F7104, two inbred lines derived
from Argentine maize germplasm, were among the
more promising exotic genetic resources to improve
cell wall digestibility in dent or flint elite germplasm
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