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Introduction
Genetic distance among breeding materials is a 

key factor to consider when predicting genetic vari-
ability among parental combinations (Bertan et al, 
2007; Laborda et al, 2005; Mohammadi and Prasan-
na, 2003; Semagn et al, 2012; Wende et al, 2013). 
High yielding as well as genetically distant genotypes 
might represent parent inbred lines with different loci 
controlling the character and probably with high com-
bining ability. Therefore, information on germplasm 
diversity and relationships existing among breeding 
materials is a key to crop improvement. Evaluation 
of genetic diversity and relationships in a given set 
of germplasm is valuable for selecting parental com-
binations aiming at developing progenies with high 
genetic variability (Semagn et al, 2012). 

Assessing genetic diversity and relatedness 
among breeding materials has a preponderant role 
in a breeding program. Development of improved 
inbred lines and identifying suitable parental com-
binations to generate high performing hybrids is the 
leading task of maize breeders (Semagn et al, 2012). 
Information related to genetic diversity and relation-

ships among diverse germplasm is valuable to plant 
breeders as this information leads the decision mak-
ing during selection of parents for crossing and is 
useful for broadening the genetic basis of different 
breeding programs (Laborda et al, 2005). Unfortu-
nately, many maize breeding programs depend on 
phenotypic evaluations. However, the presence of 
favorable alleles is difficult to be detected among 
germplasm mainly due to environment effect. This 
was earlier revealed by Leal et al (2010), who reported 
that molecular markers have proved to have differ-
ent advantages over other methods since they show 
genetic differences on a more detailed level without 
interferences from environmental factors and they 
involve techniques that provide fast results detailing 
genetic diversity. Therefore, for effective manage-
ment of genetic diversity, there is need of well-char-
acterized germplasm and genetic pools well classi-
fied into different clusters based on genetic diversity 
(Dhliwayo et al, 2009; Muhinyuza et al, 2015; Wende 
et al, 2013). 

Genetic clustering of parental inbred lines will 
permit breeders to predict maize hybrid performance 
resulting from different intergroup crosses. However, 
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the effectiveness of this will be depending on genetic 
backgrounds of the germplasm being documented. 
Generally, high diversity is expected from inbred lines 
resulting from different cluster while, low diversity is 
expected between two inbred lines within the same 
cluster. Not only genetic diversity assessment is use-
ful to identify parents for making crosses but also in 
predicting heterotic groups. Increased allelic diversity 
will be responsible of the presence of discrete ge-
netic groups among inbred lines, and this might result 
in high level of heterozygosity in the hybrid related 
to increased heterosis. However, confirming genetic 
grouping generated through molecular data is the 
most informative method and needs to be comple-
mented with combining ability tests especially on 
yield and yield components (Adeyemo et al, 2012; 
Wende et al, 2013).

Various methods to identify the best progenitors 
for generating combinations and to cluster these pro-
genitors to a given heterotic group have been report-
ed (Bertan et al, 2007; Semagn et al, 2012): i) phe-
notypic performance for particular traits, ii) pedigree 
relationship, iii) adaptability and yield stability, iv) top 
crosses, v) diallel crosses, and vi) genetic distance 
assessed from morphological and molecular mark-
ers. Although each of these methods has its own 
advantages and disadvantages, using information re-
sulting from them can contribute to identify the best 
hybrid combinations (Dhliwayo et al, 2009; Wende et 
al, 2013)

DNA markers can assist for assessing the amount 
of genetic diversity available in breeding materials 
(Adeyemo et al, 2012; Muhinyuza et al, 2015). They 
have been reported to increase the efficiency of con-
ventional breeding by shortening the time allocated 
to variety development (Semagn et al, 2012; Wende 
et al, 2013). Genetic distance assessed from molecu-
lar markers can be estimated from different types of 
molecular markers, comprising amplified fragment 
length polymorphism (AFLP), restriction fragment 
length polymorphism (RFLP), simple sequence re-
peats (SSRs), and single nucleotide polymorphisms 
(SNPs) (Semagn et al, 2012). Of these markers, cur-
rent advances in molecular technology have shown a 
shift heading to SNPs (Jones et al, 2007; Semagn et 
al, 2012). This is because of their various attributes 
such as; locus-specificity, low cost per data point, 
codominance, high genomic abundance, potential for 
high throughput analysis, and lower genotyping error 
rates (Chagné et al, 2007; Rafalski, 2002; Schlötterer, 
2004; Semagn et al, 2012). In their findings, Semagn 
et al (2012) reported SNP markers as a powerful 
tool in genetic diversity studies and marker assisted 
breeding. 

In the current study, SNPs markers were used to 
assess the magnitude of genetic diversity and rela-
tionships among maize inbred lines selected for the 
mid-altitudes and highlands of Rwanda. This will be 
useful for establishment of a hybrid breeding program 

Materials and Methods
Plant materials

A total of 71 maize inbred lines; comprising 44 lo-
cal inbred lines, 16 inbred lines from CIMMYT-Ethio-
pia and 11 lines from CIMMYT-Mexico, were used in 
the study (Table 1). Most of inbred lines from CIMMYT 
were of tropical origin and they differ in their response 
to different foliar diseases and heterotic grouping. On 
the other hand, the local inbred lines were from nine 
maize open pollinated varieties (OPVs) and some of 
these populations have been grown by farmers for 
their different attributes. All these inbred lines were 
selected based on disease resistance, vigor, and 
adaptability to local environments. 

DNA sampling and isolation 
DNA was extracted from inbred lines planted in a 

nursery at Nyagatare research station in 2014B grow-
ing season. Using the punch method, at 4 weeks after 
planting, leaf sample tissue of each individual inbred 
line was harvested at the 3-4 leaf stage. Two leaf 
discs from each inbred line were then placed into 2 
labelled 96-well blocks and each well representing an 

in Rwanda. In different breeding programs, it was re-
alized that many undesirable crosses could be avoid-
ed by allocating inbred lines into well-differentiated 
clusters (Wende et al, 2013; Muhinyuza et al, 2015) 
and molecular markers have been reported to play 
considerable role in characterizing inbred lines and 
then generating diverse clusters of genotypes based 
on genetic diversity (Melchinger and Gumber, 1998; 
Reif et al, 2005; Wende et al, 2013). Earlier studies, 
using molecular markers effectively allocated maize 
germplasm into different heterotic groups (Dubreuil et 
al, 1996; Lee et al, 1989; Livini et al, 1992; Wende et 
al, 2013). 

Currently, the maize breeding program in Rwanda 
performs selection and genetic relationships of maize 
lines based on phenotypic characterization. No study 
exists on genetic diversity assessment among maize 
inbreds in Rwanda based on molecular data. Earlier 
studies focused mostly on evaluation for adaptability 
of new introduced genotypes form different collab-
orators such as International Maize and Wheat Im-
provement Center (CIMMYT) and International Insti-
tute of Tropical Agriculture (IITA). Therefore, there is 
need to explore the genetic interrelationships existing 
among maize inbred lines selected for the major agro-
ecologies of Rwanda and find out specific clusters 
and relationships in order to establish a sustainable 
maize hybrid program in Rwanda. Consequently, the 
objectives of the current study were to apply selected 
SNP markers and determine the genetic distances 
and clusters among potential maize inbred lines se-
lected for the mid-altitudes and highlands of Rwanda. 
This is for a solid foundation of maize hybrid breeding 
program, hence a basic understanding of the genetic 
diversity and relationships among these maize acces-
sions was considered essential.
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Results and Discussion
SNPs characteristics and genetic polymorphisms

Of the 100 SNPs genotyped, 92 (92%) with miss-
ing data less than 10% and of good quality were used 
for subsequent analysis. Among the 71 maize inbred 
lines involved in the study, the 92 SNPs revealed a 
total of 184 alleles (with an average of 2 alleles per 
marker). Genetic diversity varied from 0.014 to 0.500 
with an average of 0.385. As a measure of allelic di-
versity at a locus, expected heterozygosity (He) val-
ues varied from 0.00 to 0.19 with a mean of 0.08, 
while the PIC estimates ranged from 0.014 to 0.375 
with a mean of 0.303.The ten SNPs (Table 2) exhibit-
ing the highest PIC and their potential to detect differ-
ences between the inbred lines were; PZA00543_12 
(0.3750), PZA00878_2 (0.3750), PZA01735_1 
(0.3750), PZB00085_1 (0.3749), PZA00257_22 
(0.3748), PZB01647_1 (0.3746), PZD00022_6 
(0.3746), PZA02763_1 (0.3745), PZB02510_ (0.3742), 

Table 1 - Description of maize inbred lines used in the study. 

No	 Code	 Origin	 No	 code 	 Origin	

1	 E1	 CIMMYT-Ethiopia 	 37	 M8144	 Rwanda
2	 E3	 CIMMYT-Ethiopia 	 38	 ACR3	 Rwanda
3	 E4	 CIMMYT-Ethiopia 	 39	 ACRO4	 Rwanda
4	 E5	 CIMMYT-Ethiopia 	 40	 ACR4	 Rwanda
5	 E8	 CIMMYT-Ethiopia 	 41	 ACRO29	 Rwanda
6	 E9	 CIMMYT-Ethiopia 	 42	 ACR29	 Rwanda
7	 E10	 CIMMYT-Ethiopia 	 43	 ECA1	 Rwanda
8	 E11	 CIMMYT-Ethiopia 	 44	 ECA13	 Rwanda
9	 E12	 CIMMYT-Ethiopia 	 45	 ECA18	 Rwanda
10	 E14	 CIMMYT-Ethiopia 	 46	 ECA1ECA2	 Rwanda
11	 E15	 CIMMYT-Ethiopia 	 47	 ECA1ECA1S5	 Rwanda
12	 E17	 CIMMYT-Ethiopia 	 48	 ECA1ECA5	 Rwanda
13	 E18	 CIMMYT-Ethiopia 	 49	 ECA1ECA43	 Rwanda
14	 E19	 CIMMYT-Ethiopia 	 50	 ECAP3	 Rwanda
15	 E20	 CIMMYT-Ethiopia 	 51	 ECAP11	 Rwanda
16	 E21	 CIMMYT-Ethiopia 	 52	 ECAPO23	 Rwanda
17	 M351	 CIMMYT-Mexico 	 53	 ECAP23	 Rwanda
18	 M352	 CIMMYT-Mexico 	 54	 TQX7	 Rwanda
19	 M353	 CIMMYT-Mexico 	 55	 TQ7	 Rwanda
20	 M354	 CIMMYT-Mexico 	 56	 TQ8	 Rwanda
21	 M355	 CIMMYT-Mexico 	 57	 TQX31	 Rwanda
22	 M356	 CIMMYT-Mexico 	 58	 TQ31	 Rwanda
23	 M455	 CIMMYT-Mexico 	 59	 CM523	 Rwanda
24	 M456	 CIMMYT-Mexico 	 60	 CM506	 Rwanda
25	 M457	 CIMMYT-Mexico 	 61	 MZ3	 Rwanda
26	 M459	 CIMMYT-Mexico 	 62	 MZ4	 Rwanda
27	 M464	 CIMMYT-Mexico 	 63	 MZ5	 Rwanda
28	 R10164	 Rwanda	 64	 POL1	 Rwanda
29	 R10127	 Rwanda	 65	 POL2	 Rwanda
30	 R10141	 Rwanda	 66	 POL3	 Rwanda
31	 RM8147	 Rwanda	 67	 POL4	 Rwanda
32	 RM8119	 Rwanda	 68	 POL5	 Rwanda
33	 M8147	 Rwanda	 69	 POL6	 Rwanda
34	 M8119	 Rwanda	 70	 POL7	 Rwanda
35	 RM8144	 Rwanda	 71	 POL8	 Rwanda
36	 RM8115	 Rwanda	  	  	

individual inbred line. Once the block was completed, 
a sheet of air-pore tape was put on the top of the 
block for sealing and then placed inside plastic bags 
together with 50 g of silica gel for drying purpose. The 
samples were then conveyed to DNA Landmarks lab-
oratory, Canada for genotyping. DNA was extracted 
and isolated following a proprietary Sarkosyl Nitrogen 
based method at the DNA Landmarks laboratory (Blin 
and Stafford, 1976).

Genotypic data analysis 
Based on previous research studies on maize at 

CIMMYT, a total of 100 SNPs (Table 2) were used 
in the study. However, 8 of them were not polymor-
phic with the genotypes involved in the study and 
therefore discarded from the analysis. For each SNP 
marker, number of alleles, allele frequency, number of 
genotypes, genotype frequency, observed heteroge-
neity, gene diversity, genetic distance, polymorphic 
information content (PIC), and cluster analysis based 
on similarity matrices obtained with Unweighted Pair 
Group Method with Arithmetic Average (UPGMA) to 
generate dendrograms were computed (Nei, 1991) 

using Power Marker version 3.25 (Liu and Muse, 
2005).
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Table 2 - Details of the 92 successful SNPs markers used to genotype the 71 maize inbred lines. 

	 Marker	 Availability	 He	 PIC	 Marker	 Availability	 He	 PIC

PZA00106_10	 0.9577	 0.0588	 0.3671	 PZA03116_2	 1.0000	 0.1549	 0.3498
PZA00136_2	 0.9296	 0.1212	 0.3599	 PZA03182_5	 1.0000	 0.0986	 0.3584
PZA00223_2	 0.9296	 0.1061	 0.3736	 PZA03231_1	 1.0000	 0.1408	 0.3362
PZA00257_22	 0.9718	 0.0580	 0.3749	 PZA03391_2	 1.0000	 0.1127	 0.3362
PZA00266_7	 0.9718	 0.1304	 0.3716	 PZA03395_3	 0.9859	 0.0143	 0.1906
PZA00309_2	 0.9718	 0.1014	 0.3574	 PZA03404_1	 1.0000	 0.1127	 0.3726
PZA00343_31	 0.9718	 0.1159	 0.3707	 PZA03445_1	 0.9859	 0.0571	 0.3091
PZA00352_23	 0.9577	 0.0882	 0.3715	 PZA03470_1	 1.0000	 0.0704	 0.1886
PZA00455_16	 0.9859	 0.0429	 0.3466	 PZA03474_1	 1.0000	 0.0704	 0.3111
PZA00543_12	 0.9577	 0.0882	 0.3750	 PZA03507_1	 1.0000	 0.0423	 0.3700
PZA00726_8	 1.0000	 0.0563	 0.3228	 PZA03602_1	 1.0000	 0.0704	 0.3392
PZA00827_1	 1.0000	 0.1127	 0.3726	 PZA03644_1	 1.0000	 0.0704	 0.2049
PZA00878_2	 0.9859	 0.0571	 0.3750	 PZA03661_3	 1.0000	 0.0282	 0.2777
PZA00881_1	 0.9577	 0.1029	 0.2550	 PZA03695_1	 1.0000	 0.0141	 0.0139
PZA00920_1	 0.9718	 0.1884	 0.3612	 PZA03728_1	 1.0000	 0.1408	 0.3421
PZA00947_1	 0.9577	 0.0147	 0.0929	 PZA03733_1	 1.0000	 0.0986	 0.2606
PZA00948_1	 0.9859	 0.1143	 0.3742	 PZA03743_1	 1.0000	 0.1127	 0.3522
PZA01142_4	 1.0000	 0.0704	 0.3742	 PZB00008_1	 1.0000	 0.0563	 0.1007
PZA01292_1	 1.0000	 0.0986	 0.3700	 PZB00068_1	 1.0000	 0.0704	 0.2049
PZA01304_1	 0.9859	 0.0429	 0.2854	 PZB00085_1	 1.0000	 0.1268	 0.3748
PZA01315_1	 0.9718	 0.0725	 0.3304	 PZB00109_2	 1.0000	 0.1408	 0.3738
PZA01342_2	 0.9718	 0.1014	 0.3645	 PZB00175_6	 1.0000	 0.0423	 0.2203
PZA01396_1	 0.9577	 0.0588	 0.3715	 PZB00232_1	 1.0000	 0.0704	 0.2203
PZA01447_1	 1.0000	 0.0563	 0.2979	 PZB00772_1	 1.0000	 0.0423	 0.0405
PZA01735_1	 1.0000	 0.1127	 0.3750	 PZB00869_4	 1.0000	 0.0282	 0.1969
PZA01755_1	 1.0000	 0.0563	 0.1224	 PZB01042_7	 1.0000	 0.1127	 0.3689
PZA01804_1	 0.9859	 0.0714	 0.3515	 PZB01156_2	 1.0000	 0.0845	 0.2979
PZA02019_1	 0.9859	 0.1857	 0.3633	 PZB01186_1	 1.0000	 0.0704	 0.3025
PZA02027_1	 0.9718	 0.1159	 0.3686	 PZB01358_2	 1.0000	 0.0986	 0.3620
PZA02068_1	 1.0000	 0.1127	 0.3726	 PZB01400_1	 1.0000	 0.0282	 0.1800
PZA02113_1	 0.9859	 0.0857	 0.2800	 PZB01647_1	 1.0000	 0.0563	 0.3746
PZA02148_1	 1.0000	 0.0000	 0.1007	 PZB02017_1	 1.0000	 0.1268	 0.3700
PZA02212_1	 0.9859	 0.0429	 0.2629	 PZB02033_2	 1.0000	 0.1268	 0.3742
PZA02367_1	 0.9859	 0.1000	 0.2369	 PZB02155_1	 1.0000	 0.0563	 0.3069
PZA02386_2	 1.0000	 0.0141	 0.1886	 PZB02283_1	 1.0000	 0.0986	 0.3448
PZA02450_1	 1.0000	 0.0563	 0.3603	 PZB02480_1	 1.0000	 0.0423	 0.2346
PZA02564_2	 0.9859	 0.1286	 0.3725	 PZB02510_5	 1.0000	 0.0986	 0.3742
PZA02585_2	 1.0000	 0.0845	 0.2882	 PZD00022_6	 1.0000	 0.0282	 0.3746
PZA02589_1	 1.0000	 0.0563	 0.3522	 PZD00027_2	 1.0000	 0.1127	 0.3474
PZA02606_1	 1.0000	 0.0423	 0.1327	 PZD00054_1	 1.0000	 0.0423	 0.3678
PZA02676_2	 0.9859	 0.0429	 0.3737	 PZD00072_2	 1.0000	 0.0563	 0.1224
PZA02683_1	 0.9859	 0.0714	 0.3212	 ZHD1_1	 1.0000	 0.0563	 0.3474
PZA02763_1	 0.9859	 0.0714	 0.3745	 bt2_2	 1.0000	 0.0563	 0.2665
PZA02890_4	 1.0000	 0.0000	 0.0777	 csu1171_2	 1.0000	 0.0563	 0.2414
PZA02916_5	 1.0000	 0.0563	 0.2882	 sh1_2	 1.0000	 0.0563	 0.3362
PZA02957_5	 1.0000	 0.0704	 0.3498	 umc128_2	 1.0000	 0.1268	 0.3718
He and PIC means expected heterozygosity and polymorphic information content respectively;

and PZD00022_6 (0.3742). Contrary to this, the fol-
lowing ten SNPs (Table 2) exhibited the lowest 
PIC: PZB01400_1 (0.1800), PZA02606_1 (0.1327), 
PZA01755_1 (0.1224), PZD00072_2 (0.1224), 
PZA02148_1 (0.1007), PZB00008_1 (0.1007), 
PZA00947_1 (0.0929), PZA02890_4 (0.0777), 
PZB00772_1 (0.0405), and PZA03695_1 (0.0139). 

As relative value of each marker with respect to 
the amount of polymorphism exhibited, the mean PIC 
value (0.303) observed in the current study was high-
er than the one reported in earlier findings. Using SNP 
markers for identification of functional genetic varia-
tions underlying drought tolerance in maize. Similar 

trend was also reported by Lu et al (2009) who re-
ported a mean PIC value equivalent to 0.259 using 
1034 informative SNPs and 770 maize inbred lines. 
Therefore, the high PIC value revealed in this study 
might be relevant indication confirming the potential 
for these SNP markers to discriminate between in-
bred lines from diverse origins. This was even proven 
by the fact the markers were able to disjoint closely 
related lines, indicating their usefulness for diversity 
analysis of maize inbred lines under the current study. 
On the contrary, when comparing SNPs and SSRs in 
assessment of genetic relatedness in maize, (Yang et 
al, 2011) reported a higher PIC (0.340). Similar trend 
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was also later revealed by Wende et al (2013), in their 
study on genetic interrelationships among medium to 
late maturing tropical maize inbred lines using select-
ed SSR markers, a PIC of 0.54 was reported. How-
ever, according to Srinivasan et al (2004), the PIC 
values are dependent on the genetic diversity of the 
accessions chosen. Based on genetic diversity re-
vealed in the current study in combination with the re-
vealed PIC, it would contribute in minimizing the use 
of closely related maize germplasm in maize breed-
ing program which would otherwise lead to genetic 
depression and reduced genetic variation. Therefore 
the current PIC demonstrates the usefulness of the 
SNPs and their potential to detect differences among 
the maize lines based on their genetic relationships.

Genetic distance and relationships
The dendrogram generated using the UPGMA 

clustering algorithm based on SNPs data grouped 
all the 71 inbred lines into 2 major clusters (Figure 1) 
with cluster one (I) having only 2 inbreds (MZ4 and 
MZ5) closely related in their pedigree information and 
originating from the same open pollinated variety. 
The remaining 69 inbred lines (97%) belonged to sec-
ond cluster (II) also partitioned into many sub-clusters 
(from IIA-IIBc1a2) but also exhibiting distinct group-
ings within individual sub-clusters. Two major sub-
clusters within cluster II; the first one (IIA) consisted 
of 4 lines (ET17, ET18, ET12, and ET19) of the same 
origin (CIMMYT-Ethiopia), while the second com-
prised all the rest (65) of the inbred lines. Of these 
65 lines, 11 of them (IIB) fall in the same group and 
most of them (8) sharing the same origin (CIMMYT 

Ethiopia) and the remaining 54 (76%) formed another 
group except 5(IIBa) (from ECA18 to RM8144) lines 
from Rwanda forming their own group. The remaining 
49 (69%) inbred lines (IIBb-IIBc1a2) formed another 
major group having many small groups in it, however, 
some of the inbred lines within these groups were 
aligned following their origin or their pedigree origin. 

Generally, with some exceptions, there was a 
random allocation of the inbred lines into different 
clusters and / sub-clusters. Some of the inbred lines 
closely related were grouped in the same cluster or 
same sub-cluster (cluster I), confirming the pres-
ence of relationship between the pedigree and the 
SNPs marker groupings in this study. Though some 
of these inbred lines seemed to cluster according to 
their pedigree grouping (ECA18, ECA1, and ECA13), 
there were some inconsistencies; for instance: M355, 
M356, ECA1ECA2, and TQX7 clustered together de-
spite being unrelated by pedigree. Similar findings 
were earlier reported (Dhliwayo et al, 2009; Semagn 
et al, 2012; Wende et al, 2013; Yang et al, 2011). 

Discrepancies in classification of germplasm re-
vealed when comparing molecular results with clas-
sification based on pedigree relatedness were earlier 
reported (Dhliwayo et al, 2009; Yang et al, 2011). 
They might resulted in the fact that all the local inbred 
lines involved in the current study were developed 
from maize open pollinated varieties selected from 
regional trials obtained from CMMYT-Kenya, there-
fore, there might be exchange of breeding materials 
among different CIMMYT breeding programs, justify-
ing the alignment of some inbred lines from different 
origin in the same clusters or sub-clusters. Further-
more, these inconsistencies in inbred lines alignment 
may result also from the effects of mutation, selec-
tion, and genetic drift (Marsan et al, 1998; Senior et 
al, 1998; Wende et al, 2013). 

Prasanna et al (2004) mentioned that effective and 
reliable discrimination of inbred lines not only helps in 
identification of genotypes, but also in promoting ef-
ficient utilization of genetic materials in breeding pro-
grams. This was also earlier pointed out by Hallauer 
and Miranda (1988) mentioning that the genetic diver-
gence of parental varieties defines the manifestation 
of heterosis, and the heterotic pattern is determined 
by the genetic divergence of 2 parental lines. There-
fore, crossing schemes comprising the more distant 
maize genotypes might allow for greater success in 
the production of genetic variability and thus might 
maximize the exploitation of heterosis and segrega-
tion (Molin et al, 2013). Consequently, the observed 
relationships in this study could be exploited accord-
ingly in order to design a strong breeding maize hy-
brid program in Rwanda. 

Conclusions 
In overall, the SNPs markers disjointed the inbred 

lines into 2 major distinguishable clusters; this was 
disagreeing with the current pedigree records. How-
ever, this was not applied for sub-clusters; in some 

Figure 1 - Radial dendrogram showing genetic relationships 
among 71 maize inbred lines tested using 92 SNP markers. 
The two clusters are denoted from I to II while sub-clusters 
are denoted from IIA to IIBc1a2.
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of the sub-clusters, the SNPs markers partitioned the 
inbred lines into distinguishable clusters in alignment 
with the pedigree records. Furthermore, in addition 
to high PIC exhibited by some individual markers 
and their mean, the amount PIC observed under this 
study confirmed how useful are these SNPs markers 
for diversity investigation among these maize inbred 
lines under consideration. The acquired information 
from the current study regarding the amount of ge-
netic diversity and relationships revealed in the maize 
inbred lines selected for the mid-altitudes and high-
lands of Rwanda in combination with combining abil-
ity and pedigree records would be explored to point 
out suitable heterotic patterns and group the inbred 
lines into specific heterotic groups. This genetic clus-
tering would be suitable information for maize hybrid 
breeding program establishment in Rwanda, but also 
for other collaborative tropical maize breeding pro-
grams.
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