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Abstract

Introduction
The development of maize inbred lines and the 

search of their best hybrid combinations is the fo-
cus of maize hybrid breeding programme in Zambia 
(Ristanovic et al, 1987). This involves the develop-
ment and improvement of open pollinated varieties 
as sources of inbred lines, followed by identifying the 
best inbred line combination determined by evaluat-
ing testcrosses in more than six locations for more 
than 3 years (Ristanovic et al, 1987). The procedure is 
thus time consuming and expensive especially when 
resources are limiting (Mienie and Fourie, 2013). As 
a consequence, the Zambian maize breeding pro-
gramme has been crossing exotic elite lines to local 
elite lines followed by inbreeding and selection. In de-
veloping hybrids, modified single crosses were often 
used compared to single crosses. This type of inbred 
line development may result in having a high percent-
age of inbred lines that are very similar (genetic dis-
tance less than 0.05), a sign of having duplicates, if 
unchecked. 

Classification of maize inbreds into known heter-
otic groups is one of the methods that can be used 
to reduce the number of duplicates while preserv-
ing diversity. Heterotic grouping results in maximis-
ing combining ability (Barata and Carena, 2006) and 

helps the breeder to make informed decisions on 
suitable hybrid combinations (Reid et al, 2011). This 
reduces the chance of evaluating a high number of 
undesirable crosses. The concept of heterotic groups 
and heterotic patterns in maize is meant for the sys-
tematic exploitation of grain yield heterosis (Melch-
inger and Gumber, 1998). Recently, the concept has 
been seen to be important for the development of 
«climate-change resilient maize cultivars» (Prasanna, 
2012). Therefore, breeders have been identifying mul-
tiple heterotic groups and patterns to improve maize 
hybrid breeding or monitor changes in heterotic pat-
terns after prolonged breeding (Choukan et al, 2006; 
Teng and Li, 2004; Zhang et al, 2000). 

There are many methods of classifying maize in-
bred lines into heterotic groups (Aguiar et al, 2008a; 
Barata and Carena, 2006; Fan et al, 2003; Reid et al, 
2011; Reif et al, 2003a; Senior et al, 1998; Suwarno 
et al, 2014; Xia et al, 2004). Molecular markers are 
among the methods that allow a greater number of 
inbred lines to be characterised and established into 
distinct cluster of genotypes based on genetic dis-
tance, thereby increasing the efficiency of breeding 
(Melchinger and Gumber, 1998; Reif et al, 2003a; 
Reif et al, 2003b). Studies have shown that molecular 
markers are effective in assigning maize inbred lines 
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that were obtained from major breeding programmes in Zambia, Zimbabwe, CIMMYT, IITA, and USA. The 45 in-
bred lines were assessed for their genetic diversity and assigned to different heterotic groups using 129SNPs. The 
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ern African maize inbred lines. It is recommended that the genetic distance based grouping should be verified by 
combining ability studies.
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into heterotic groups (Aguiar et al, 2008b; Akinwale et 
al, 2014; Reid et al, 2011; Reif et al, 2003a; Suwarno 
et al, 2014). Several studies have demonstrated that 
molecular marker based heterotic grouping of maize 
inbred lines is positively correlated to F1 grain yield 
and specific combining ability (Akinwale et al, 2014; 
Badu-Apraku et al, 2015; Drinic et al, 2002; George 
et al, 2011; Laude and Carena, 2015; Phumichai et 
al, 2008; Pinto et al, 2003; Reid et al, 2011; Zheng 
et al, 2008). Recently, SNP based heterotic grouping 
has been shown to be the most efficient compared to 
SCA and GCA (HSGCA) heterotic grouping even over 
heterotic grouping based on GCA of multiple traits 
(HGCAMT) (Badu-Apraku et al, 2015). Furthermore, it 
has been shown that including reference inbredlines 
(inbred lines with known genetic background and 
heterotic relationship) increases the integrity of mo-
lecular marker based heterotic grouping (Negrini et al, 
2009). Since molecular characterisations of diverse 
maize inbred lines and populations from eastern and 
southern Africa has been inconclusive (Semagn et 

Table 1 -  Name, origin and pedigree of the mini-core set of 45 maize inbred lines.
ID	 Inbred	 Source*	 Pedigree

1	 212-758	 Zambia	 [[SW1SR/COMPE1-W]-61-2-1-B/89[32/DRSTEW]#-107-2-3-X-1]-B-14-1-B-1-#-B X L12-2-2-4-2-B-B
2	 213-813	 Zambia	 [TEWDSR-DrtTolSynS1#-8-X-X-1-B*4/CML390]-B-28-1-B-3-#-B X L1214-3-7-2-3-3-B-2
3	 214-823	 Zambia	 [TIWD-EarlySelSynS1#-2-XX-2-B/[SW1SR/COMPE1-W]-126-2-1-B]-B-27-4-B-2-#-B X L1214-2-2-2-3-2-2
4	 214-845	 Zambia	 [Ent67:92SEW1-17/[DMRESR-W]EarlySel-#I-3-3-B/CML391-2]-B-31-B-4-#-B X L1214-2-11-1-2-B-3
5	 A632	 USA	 [(Mt42 X B14) B14(3)].
6	 B73	 USA	 Iowa Stiff Stalk Synthetic C5
7	 CML395	 C-Z	 90323(B)-1-B-1-B*4
8	 CML444	 C-Z	 P43C9-1-1-1-1-1-BBBB
9	 CML536	 C-Z	 [CML442/CML197//[TUXPSEQ]C1F2/P49-SR]F2-45-7-3-2-BBB]-2-1-1-1-1-B
10	 CML539	 C-Z	 MAS[MSR/312]-117-2-2-1-B
11	 CR1Ht	 USA	 (WI17Ht x Mo17Ht)
12	 GVL1025	 Zambia	 K64R-7-3 X L5522-1-5-1-2-2-B-B
13	 GVL1083	 Zambia	 L913xL1216-4-2-3 X ZEWA-4-2-4-1-2-4
14	 GVL1282	 Zambia	 (CML386-5 X L710) X L710-3-2-6-5-B-B
15	 GVL1292	 Zambia	 ([[MSR123XI137TN-9-2-4-X-3/LZ956441]-B-1-5-5-BB-2-2 X L917) X L917-2-1-B-1
16	 GVL506	 Zambia	 [INTA-2-1-3/INTA-60-1-2]-X-11-6-3-BB-6-1-B-B
17	 GVL522	 Zambia	 ZUCA 2000/1-2-2-1-1-4-2-B-B
18	 GVL556	 Zambia	 90323(B)-1-X-5-BB-2-1-BBB-9-B-1
19	 GVL721	 Zambia	 x (discard) 1 X L917-1-5-2-1-4
20	 GVL82	 Zambia	 L12 M1 (220Gy)-150-3-2-1-1-3-2-1-1-B-4
21	 GVL916	 Zambia	 SW89300-IP5S2-5-##1-1-3-B X L1214-2-3-1-1-1-2-2-B-2
22	 H99	 USA	 Illinois synthetic
23	 Houbai	 China	 Huojia Baimaya (Landrace)
24	 IITA1	 IITA	 [TZM1501/KU1414/501]-1-4-3-1-B*6
25	 K64-r	 Zimbabwe	 K64
26	 L12	 Zambia	 Yugoslav germplasm
27	 L1212	 Zambia	 L12 version
28	 L152	 Zambia	 V01/87923-x-7575-3-3-1-2-3-2
29	 L211	 Zambia	 L2 version
30	 L3233 	 Zambia	 L3233 version
31	 L3234	 Zambia	 Unknown
32	 L5522	 Zambia	 Contaminated SC selection
33	 L917	 Zambia	 Yugoslav germplasm L9 version
34	 Mo17	 USA	  C.I.187-2 x C103
35	 N3	 Zimbabwe	 Salisbury White germplasm
36	 ND405	 USA	 ND203 x OH51A
37	 ND474	 USA	 [(WD x Wf9)WD(2)]
38	 NK778	 USA	 (WI17XB37Ht). WI17 
39	 Oh43	 USA	 Oh40B X W8
40	 PHG50	 USA	 (PH848 x PH207)
41	 PHR36	 USA	 ((((203 X 549) X 549) X 848) X 848) X 848 
42	 SC	 Zimbabwe	 Salisbury white
43	 Suwan1	 Thailand	 Unknown
44	 Tzi9	 IITA	 Sids 7734 x TZSR
45	 Zea diploperennis	 Mexico	 maize progenitor

*C-Z = CIMMYT-Zimbabwe, USA = United States of America, IITA = International Institute of Tropical Agriculture.

al, 2014; Semagn et al, 2012; Warburton et al, 2008; 
Warburton et al, 2005; Warburton et al, 2002), the in-
clusion of temperate maize inbred lines with known 
genetic background and heterotic relationships 
would help to properly classify the tropical lines. 
Therefore, this study was undertaken to determine 
the genetic inter-relationship and heterotic grouping 
of a core set of Southern African maize inbred lines. 
The maize inbreds with expired United States Plant 
Variety Protection (ex-PVPA), selected from well-
known heterotic groups were included in the study, 
as reference materials (Negrini et al, 2009). In Zam-
bia, despite having a well-developed maize breeding 
programme, there is no study that has been under-
taken to classify the inbred lines into well-defined 
heterotic groups and patterns. Considering the large 
number of inbred lines in the Zambian breeding pro-
gramme (Author, 2015), the use of molecular markers 
to characterisation the inbred lines will increase the 
efficiency of hybrid breeding and the development of 
genetically enhanced hybrids.
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Results
Characterisation of SNP diversity

Forty five inbred lines were surveyed with 96 
SNPs of which 59 SNPs were polymorphic and their 
results for MAF, PIC, and gene diversity are shown in 
Figure 1. In the core set, 47.9% markers had minor 
allele frequency (MAF) of < 0.20 while 71.9% of the 
SNPs had high polymorphism content (PIC > 0.20). 
The MAF ranged from 0.02 to 0.49 with majority of 
the markers having MAF ranging from 0.06 to 0.10. 
Only 4 markers had MAF less than 5% and therefore, 
majority (95.8%) of the markers were of good qual-
ity. About 42 SNPs (43.8%) were relatively infrequent 
(MAF = 0.05 to 0.20). The average heterozygosity was 
0.02 and gene diversity ranged from 0.04 to 0.50. The 
PIC ranged from 0.04 to 0.37 with majority of the 
SNPs having a PIC of 0.35 to 0.40. Only 12SNPs were 
non polymorphic among the tropical maize inbreds 
but were highly informative (PIC > 0.25), with high 
gene diversity among the temperate inbreds (Table 
2). These markers can be used for discriminating be-
tween temperate and tropical inbred lines and for de-
tection of rare alleles in tropical inbred lines.   

Genetic similarity and clustering
The genetic distance between pairwise com-

parisons of the 45 mini core set, including Zea dip-
loperennis, ranged from 0.03 to 0.99 (Supplementary 
Table 1). The highest distance of 0.99 was observed 
between inbreds B73 and Mo17, followed by that 
between inbreds B73 and CR1Ht (0.80). The lowest 
distance was between L3233 and N3 (0.03) followed 
by that between GVL1282 and GVL1292 (0.06). The 
genetic distance among the tropical inbreds ranged 
from 0.03 to 0.44, with a mean of 0.28 having a range 
of 0.41 (Supplementary Table 1). The highest GD was 
between N3 and Tzi9. On the other hand, the genet-
ic distance (GD) among the temperate inbred lines 
ranged from 0.27 to 0.99, with a mean of 0.39 and 
range of 0.72. Considering the tropical/temperate 
inbred line pairs, the largest genetic distances were 
observed between B73 and TZi9 (0.60). The lowest 

Materials and Methods
Plant Materials

A mini core set of 45 inbred lines was developed 
from 96 maize inbred lines obtained from South-
ern Africa and the United States of America (USA), 
screened with 96SNPs. The 45 inbred lines consisted 
of 22 inbred lines from Zambia, three from Zimbabwe, 
four from CIMMYT, two from IITA and 21 inbreds 
from USA. The 21 inbred lines from USA included 
seven ex-PVPA (Nelson et al, 2008) and one maize 
progenitor, Zea diploperennis. Among the seven 
ex-PVPA, inbred lines PHG50 (PH207), B73, Mo17, 
A632, and Oh43 represented the three predominant 
heterotic groups in USA (Nelson et al, 2008; Reid et 
al, 2011). The other two inbred lines, namely ND474 
and ND405, are from North Dakota, representing the 
Wf9 and Minnesota13 heterotic groups (Barata and 
Carena, 2006). 

DNA extraction and genotyping with SNPs
The DNA for the 96 genotypes was extracted us-

ing the modified CTAB method (Saghai-Maroof et al, 
1984). The DNA for the 76 genotypes from Southern 
Africa were extracted at CIMMYT/ILRI, BeCa in Nai-
robi (Kenya), while the DNA for the 20 inbreds from 
USA were extracted at the Department of Agronomy, 
Iowa State University, Ames in USA. The DNA sam-
ples of all the 96 genotypes were standardised and 
then sent to the Genomics Technology Facility (http://
www.plantgenomics.iastate.edu/) at Iowa State Uni-
versity for genotyping with 96 SNPs using Sequenom 
technology (http://www.plantgenomics.iastate.edu/
instrumentation.php). Thereafter, a mini core set of 45 
inbred lines were selected form the 96 inbred lines. 
The names and pedigree of the selected inbred lines 
is shown in Table 1. 

Data analyses
The Minor Allele Frequency (MAF), gene diversity, 

polymorphic information content (PIC) and the Rod-
gers’ (1972) genetic distance were calculated using 
the genetic analysis software, the PowerMarker ver-
sion3.25 (Liu and Muse, 2005). Minor allele frequency 
(MAF) were taken to be alleles with a frequency of 
<0.20 (Jones et al, 2007). The Rodgers’ (1972) ge-
netic distance was calculated based on shared allele 
frequency (Reif et al, 2005):

RGD= 1
m

1
2

(pij-qij )
2

j=1

nj

å
i=1

m

å
   

where pij and qij are allele frequencies of the jth allele 
at the ith locus, nj is the number of alleles at the jth 

locus and m refers to the number of loci. The Rodg-
ers (1972) distance matrix was then subjected to Dar-
win software, version 5.0.157 (Perrier and Jacque-
moud-Collet, 2006) for Principal Coordinate Analysis 
(PCoA), cluster analysis and visualization of the den-
drogram. Polymorphic information content (PIC) was 
calculated as: PIC = 1 -  Sfi

2, where fi
2 is the frequency 

of the ith allele, averaged across the loci. 

Figure 1 - Properties of 129 SNP markers used on 45 inbred 
lines.
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genetic distances were observed between inbred 
lines GVL1282 and Huobai (0.21). Among all the key 
ex-PVPA temperate inbred lines (Mo17, B73, A632, 
PHR36, H99 and CR1Ht), only Mo17, B73 and CR1Ht 
had genetic distances greater than 0.44 with most of 
the tropical inbred lines (Supplementary Table 1). The 
temperate inbred lines, namely NK778, Oh43, PHG50, 
Suwani1, Huobai, and ND405 failed to have genetic 
distances greater than 0.44 with tropical lines. 

When the inbreds were clustered using Zea dip-
loperennis as the root (outgroup), four groups were 
observed (Figure 3), clearly separating temperate in-
breds, Mo17 and B73 into groups 1 and 3 respec-
tively, and separating tropical inbreds N3 or L3233 
and SC or L5522 into groups 2 and 4 respectively. 
Inbred line, K64r was alone. Group 1 had five temper-
ate inbred lines and 10 tropical inbreds and the no-
table line in this group was B73. Group 2 had mostly 
tropical inbred lines with only Houbai as a temperate. 
Mo17 and Oh43 were clustered together with other 
7 temperate inbred lines in group 3, with TZi9 and 
CML536 as the only tropical lines in this group. Group 
4 had tropical inbred lines only which included the 
southern African N3 and SC heterotic patterns; N3 
and L3233. The highest gene diversity (0.32) was ob-

Table 2 -  Properties of 12 SNPs that were missing (rare alleles) in tropical inbred lines.

SNo	 Marker	 Gene Diversity	 Heterozygosity	 PIC*	 MAF*

1	 11005W46	 0.3200	 0.0000	 0.2688	 0.2000
2	 16676W3	 0.2778	 0.0667	 0.2392	 0.1667
3	 20399W4	 0.4898	 0.0000	 0.3698	 0.4286
4	 30618W25	 0.3200	 0.0000	 0.2688	 0.2000
5	 32875W26	 0.4978	 0.0000	 0.3739	 0.4667
6	 33362W31	 0.1244	 0.0000	 0.1167	 0.0667
7	 39571W27	 0.2311	 0.0000	 0.2044	 0.1333
8	 46177W5	 0.2311	 0.0000	 0.2044	 0.1333
9	 72893W32	 0.3200	 0.0000	 0.2688	 0.2000
10	 77095W27	 0.4082	 0.0000	 0.3249	 0.2857
11	 91724W37	 0.3200	 0.0000	 0.2688	 0.2000
12	 94591W13	 0.3200	 0.0000	 0.2688	 0.2000
	 Maximum	 0.4978	 0.0667	 0.3739	 0.4667
	 Minimum	 0.1244	 0.0000	 0.1167	 0.0667
*PIC = polymorphic information content, MAF = minor allele frequency.

Figure 2 - Genetic distances of 45 inbred lines genotyped 
with 129 SNPs.

served in group 3 followed by those in group 1 (0.30) 
(Table 3). The gene diversity for group 2 and 4 were 
0.22 and 0.23 respectively (Table 3). Group 1 had a 
high proportion of tropical inbreds while group 3 had 
a high proportion of temperate inbred lines. 

The Principal Coordinate analysis shows that the 
temperate inbred lines are scattered on the graph 
(Figure 4). The tropical inbred lines, however, are not 
as dispersed as temperate inbreds but are mostly 
clustered around the centre. The inbreds A632, Mo17, 
B73 and N3/L3233 are located on the extremes (or 
vertex) of the scatter plot. The temperate inbred lines, 
A632, Mo17, and B73 were dispersed on the PCoA 
plot indicating that they are divergent. 

Discussion
Genetic divergence and clustering of maize inbred 
lines 

The study revealed that the temperate inbreds 
were more divergent, having high mean genetic dis-
tance (0.38) and range (0.72) compared to the tropical 
inbreds with low mean genetic distance (0.28) and low 
range (0.41). The observed large divergence among 
temperate lines has been reported before (Wen et al, 
2012; Zheng et al, 2008). Mo17 and B73 were identi-
fied as the most divergent, which is consistent to their 
known heterotic grouping and response. The large 
genetic distance between Mo17 and B73 observed 
in this study has been reported before (Choukan et 
al, 2006). To the contrary, the genetic distances be-
tween N or L3233 and SC or L5522 were low (0.32 
and 0.34, respectively), yet according to Mickelson et 
al (2001), the pairs are key heterotic groups of maize 
hybrid breeding in Eastern and southern Africa. The 
GD observed between the N and SC heterotic groups 
is three times less than the distance of their counter-
part Mo17 and B73 heterotic groups. The observed 
heterotic response to grain yield between the N and 
SC groups, despite low genetic distances, has been 
largely attributed to the large dominance gene effects 
(80%) and 20% accounted for additive and additive x 
additive mode of gene action (Derera and Musimwa, 
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Figure 3 - Phylogenetic relationship of the mini core set of 45 maize inbred lines (Red= Temperate, Black= Tropical and Blue= 
Zea diploperennis).

2015). Thus, the genetic basis of heterosis between 
the N and SC heterotic groups needs further investi-
gation. 

The number of clusters formed in molecular 
marker based classification is reflective of heterotic 
groups, which depends on the degree of genetic 
divergence. This is because there is a relationship 
between genetic distance and heterosis (Moll et al, 
1965), which is characterised by significantly high 
positive correlations (Reif et al, 2003a; Reif et al, 
2003b). Furthermore, genetic diversity is highly re-
lated to transcriptional variation, which accounts for 
80% of heterosis observed in maize hybrids (Stupar 
et al, 2008). SNP based genetic distances of between 
0.44 and 0.77 have been reported to be highly cor-
related to grain yield and specific combining ability 
(George et al, 2011; Reid et al, 2011). Thus cluster 
analysis separated the tropical inbred lines having 
the topical inbred lines into the N and SC heterot-
ic groups, while the temperate lines being grouped 
into the BSSS and Lancaster heterotic groups. The 
separation of inbred lines into temperate and tropical 
groups is commonly reported in molecular diversity 
studies (Fan et al, 2003; Zheng et al, 2008). We also 
expected that the seven prominent USA inbred lines, 
namely Mo17, PHG50, B73, A632, Oh43, ND474, and 
ND405 would form individual clusters. However, they 
were clustered into Iowa Stalk Synthetic (BSSS) and 
Lancaster sure crop (LSC) heterotic groups (Precia-
do–Ortiz and Johnson, 2004). The two north Dakota 
inbred lines, ND405 and ND474 with Minnesota 13 
and Wf9 background respectively (Barata and Care-
na, 2006), were also grouped into the BSSS and LSC 
respectively (Figure 3). The grouping of ND405 with 
the BSSS is expected as most North Dakota lines 
have BSSS background (Barata and Carena, 2006). 
Since the temperate inbred lines were grouped ac-
cording to the expected heterotic groups, we can 
therefore confidently say that the clusters represent 

the true reflection of the heterotic groups. Therefore, 
the main heterotic groups were identified as: B73 
heterotic group (group 1), SC heterotic group (Group 
2), Oh43/Mo17 heterotic group (group 3), N heterotic 
group (group 4) and the K heterotic group (K64r). Sub-
groups were also observed in some of the main het-
erotic groups. The clustering results indicates that the 
K group has not been extensively used or utilized in 
breeding as there was only one member in the group, 
K64r. The inbred lines from CIMMYT-Zimbabwe are 
classified as heterotic group A or B, with inbred lines 
CML395, CML444 belonging to heterotic group B 
while CML536 and CML539 belonging to heterotic 
group A (Semagn et al, 2012). In this study, inbreds 
CML536 and CML539 were clustered separately, in-
dicating that they are far apart to be clustered togeth-
er. CML536 was put in the Mo17 group and CML539 
in the N group. The clustering of CML539 (CIMMYT-A 
group) together with N group indicates that much of 
the N genome was recovered from N3 during the con-
version of the Mexican Tuxpeno germplasm to a MSV 
tolerant line, using N3 as a donor (Vivek et al, 2009). 
However, it seems less genome of SC was recovered 
from Mexican ETO Blanco germplasm during conver-
sion of CML536 to MSV resistant inbred line using SC 
as a donor (Vivek et al, 2009). The observed disparity 
in classification of CML536 and CML539 have also 
been reported in West African Maize inbred lines (Ad-
etimirin et al, 2008). 

The non-divergence of key historical tropical 
maize inbreds compared to the temperate inbreds ex-
plains, in part, the non-heterotic responses observed 
among tropical lines (Xia et al, 2005). The non-exis-
tence of alternative heterotic groups apart from the N 
and SC indicates that no breeding efforts were made 
to improve the divergence among the two groups. In 
Zambia, this can be attributed to the change in focus 
of the breeding programmes due to the influence of 
the donors (Ristanovic et al, 1985; Ristanovic et al, 
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Table 3 -  Genetic properties of the clusters.

		  Sample		  Allele	 Gene
Cluster*	 MAF	 Size	 NFO	 Number	 Diversity 	 Het	 PIC

1	 0.2162	 15	 14.3646	 1.9167	 0.2999	 0.0239	 0.2432
2	 0.1567	 14	 13.3438	 1.7188	 0.2188	 0.0172	 0.1783
3	 0.2458	 9	 8.6771	 1.8542	 0.3211	 0.0301	 0.2550
4	 0.1763	 7	 6.7083	 1.6354	 0.2342	 0.0252	 0.1872
*MAF = minor allele frequency, NFO = number of observations, Het = Heterozygosity and PIC = polymorphic information 
content.

1987). Another probable reason for failure to distinct-
ly separate the lines is caused by developing lines 
from crosses between different groups (Mienie and 
Fourie, 2013), leading to having lines with mixed ori-
gin. However, successes has been scored by deriv-
ing the lines from crosses between sub-groups within 
the same heterotic group, which is an efficient way 
of developing hybrids between groups (Zhang et al, 
2002). Therefore, there is need to expand the genetic 
base of the tropical inbred lines in relation to the ob-
served heterotic groups.

Inbred line development
Most commercial breeding companies intermate 

inbred lines within a heterotic pattern or family (Lu 
and Bernardo, 2001; Mikel, 2008), also called «inbred 
recycling». In Zambia, pedigree breeding is used for 
inbred lines development. However, looking at the 
pedigree information elite exotic lines were crossed 
to elite local lines for extracting inbred lines. There-
fore, it is possible for the Zambian inbred lines to be 

diverse and/or have a high number of duplicates. 
Therefore, it is recommended that inbred lines be ex-
tracted from well-established divergent populations. 
Since there are no populations based on the N and 
SC grouping, marker based clustering can be used 
to form synthetics which can be used as base popu-
lation for inbred line extraction. Studies have shown 
that synthetics formed by crossing inbred lines with 
low genetic similarity (GS = 0.32 and 0.34) performs 
better than synthetics formed based on high genetic 
similarity (GS = 0.44 and 0.77) or based on combin-
ing ability (Narro et al, 2012). Once the synthetics are 
formed, their divergence can be increased by recur-
rent selection (Hinze et al, 2005), before being used 
for inbred line extraction.  

Enhancement of heterotic response of tropical in-
breds by CIMMYT, IITA and temperate inbred lines

Wen et al (2011) observed that incorporating 
exotic lines with unique alleles and clear heterotic 
patterns enhances heterosis and grain yield of local 

Figure 4 - Principal Coordinate Analysis of 45 inbred lines genotyped with 96 SNPs.
Red = Temperate, Black = Tropical, Blue = Zea diploperennis.
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germplasm. In this case the mini core set forms an 
initial working panel for increasing the heterotic re-
sponse of the N and SC groups of tropical maize. 
Studies have shown that hybrid performance is cor-
related to SNP based genetic distance of between 
0.44 and 0.77 of parental pairs (Badu-Apraku et al, 
2015; George et al, 2011; Laude and Carena, 2015). 
Therefore, temperate-tropical pairs with genetic dis-
tance between 0.44 and 0.77 have potential to be 
used in tropical breeding. All the CIMMYT and IITA 
inbred lines had genetic distances less than 0.44 with 
the N and SC groups, except for Tzi9, which had a 
genetic distance of 0.44 with N3. The temperate in-
bred lines: Mo17, B73, A632, H99, CRHt, ND474, and 
PHR36 had genetic distances greater than 0.44 with 
the N and SC heterotic groups (Supplementary Table 
1). The K group (K64r) had genetic distances greater 
than 0.44 with B73, CRHt, and H99. Since the inbred 
lines; B73, Mo17, PHG50, A632, and Oh43 repre-
sents the three predominant heterotic groups (Nelson 
et al, 2008a), they would be potentially useful in im-
proving the N and SC groups. Similarly, the inbred 
lines ND405 and ND474 has Minnesota13 and W9f 
background, respectively (Barata and Carena, 2006), 
but only ND474 would be useful, as it had genetic 
distances of 0.44 with both L3233 and N3. Although 
CIMMYT inbred lines are sources of favourable alleles, 
Xia et al (2005) and Semagn et al (2012) observed that 
their usage requires a systematic approach. This en-
tails that the Zambian germplasm should first be well 
characterised into heterotic groups before IITA and 
CIMMYT inbred lines can be incorporated based on 
their combining ability with local germplasm. 

Conclusion
The development of germplasm that belongs to 

different heterotic groups and/or patterns is vital for 
breeding high yielding and stress tolerant maize hy-
brids. Therefore, the ability to efficiently determine 
the heterotic grouping and patterns as well as identify 
new alternative heterotic groups for introduced germ-
plasm is critical to the success of maize hybrid breed-
ing programme in Zambia and other sub-Saharan 
African (SSA) countries. The inclusion of temperate 
inbred lines from well-known heterotic groups can 
aid in identifying potential heterotic groups of germ-
plasm that has not been characterised. Based on the 
grouping of temperate inbred lines one would be able 
to infer the classification of tropical lines. The study 
showed that tropical inbred lines had 47% rare al-
leles (frequency < 0.20) and temperate lines had 33% 
rare alleles. This indicates that more temperate lines 
should be screened with more markers for identifying 
useful inbred lines. The study identified B73, Mo17, 
A632, ND474, H99, PHR36, and CR1Ht for improv-
ing the N and SC heterotic groups. The study shows 
that including inbred lines from established heterotic 
groups in a molecular characterisation program, is 
essential for the proper identification of potential het-
erotic groups of Southern African maize inbred lines.   
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