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Limited research on environment and production practices on grain yield and yield components of waxy maize 
(Zea mays L) has been conducted. Research was conducted in 2012 and 2013 at Mead and North Platte, NE under 
irrigated and rainfed water regimes with the objective to determine the influence of environment, water regime and 
hybrid on waxy maize yield and yield components. The waxy maize hybrids P0461EXR, P35F36, P1162EXR, and 
P1395EXR were grown. Grain yield, ears m-2, kernels ear-1, kernels row-1, rows ear-1, ear length, and circumfer-
ence and kernel weight were determined. Average grain yield was 9.5 Mg ha-1 across environments and irrigation 
increased grain yield by 3.1 to 3.3 Mg ha-1 at Mead and 8.1 to 12.7 Mg ha-1 at North Platte. The highest irrigated 
grain yields of 14.2 Mg ha-1 were produced at North Platte in 2013 while the highest rainfed grain yields of 10.1 
Mg ha-1 were produced in Mead in 2013. Kernel weight in Mead and North Platte irrigated environments had the 
highest correlation with grain yield (R = 0.67), while kernels ear-1 had the highest correlation (R = 0.78) with grain 
yield in the North Platte rainfed environment. Hybrid influenced yield and yield components, however the influ-
ence on yield was much less than for environment and water regime. Waxy maize had similar grain yield and yield 
components to previous studies with dent maize. Irrigated and higher rainfall environments produced high waxy 
maize yields, thus waxy maize should be a viable specialty crop option if minimal market incentives are available.

Abstract

Introduction
Waxy maize (Zea mays L) is composed of 100% 

amylopectin starch compared to approximately a 
75% amylopectin: 25% amylose ratio for normal 
dent maize (Fergason, 2001). This branched starch 
allows for unique end uses such as food thickeners 
and adhesives, and thus, is commonly marketed as a 
specialty grain. Production practices for waxy maize 
hybrids are similar to those used for normal hybrids 
with the only difference being the need for isolation 
and cleaning equipment for identity preservation. 

The waxy trait is controlled by a recessive gene 
(Fergason, 2001) that is incorporated into normal dent 
maize inbred lines by backcrossing and recovered in 
future generations. Waxy maize hybrids are usually 
counterparts of dent hybrids popular a few years ear-
lier, thus yields of waxy maize hybrids «lag» behind 
those of the best normal hybrids. However, newer 
waxy maize hybrids have less yield «lag» than was 
true for older hybrids (Thomison, 2011). For these 
reasons, yield components of waxy maize would be 
expected to be the same or similar to those of normal 
maize, but this has not been documented. 

Maize yield is the product of yield components 
that are interrelated, have compensatory effects, and 
develop sequentially at different stages (Dofing and 
Knight, 1992). The yield components ears m-2, kernels 
ear-1, and kernel weight have direct effects on maize 

grain yield, and indirect effects via other yield com-
ponents, while other components such as number of 
rows ear-1, kernels row-1, ear length and ear circum-
ference have only indirect effects. Detailed yield com-
ponents studies have been reported for many spe-
cies but detailed yield component studies in maize 
are limited (Agrama, 1996; Mohammadi et al, 2003). 
Production practice research for waxy maize in the 
western maize belt is also limited. 

The sequential development of yield components 
at different growth stages acts as a buffer against 
very low yields since the climate is rarely unfavor-
able throughout the entire growing season (Hay and 
Walker, 1989). The compensatory effect of yield com-
ponents allows reductions in early developing yield 
components to be compensated for by increasing 
later yield components. Early-season growing condi-
tions influence the number of ears m-2 (Evans et al, 
2003), while mid-season (mid-vegetative to mid-grain 
fill stages) growing conditions tend to influence the 
number of kernels ear-1 (Cicchino et al, 2010; Pandey 
et al, 2000; Moser et al, 2006). The potential num-
ber of kernels ear-1 is a result of number of rows ear-1 
determined at the V7 growth stage and kernels row-1 
determined at the V16 growth stage (Abendroth et al, 
2011). Number of rows ear-1 is strongly related to ge-
netics and is only influenced by serious environmen-
tal stresses (Begna et al, 1997; Abendroth et al, 2011). 
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Table 1 - Seasonal rainfall and temperatures at Mead, NE and North Platte, NE in 2012, and 2013 (High Plains Regional Cli-
mate Center. 2012-13).

	 Potential
	 Rainfall	 evapotranspiration 	 Average  temperature

Month	 2012	 2013	 30 yr	 2012	 2013	 2012	 2013	 30 yr
	 average	 average

	 Mead
	 mm	 °C

April	 71	 92	 73	 164	 128	 12.8	 6.9	 10.3
May	 97	 163	 112	 238	 173	 18.9	 15.2	 16.3
June	 108	 119	 106	 243	 180	 22.5	 21.1	 21.9
July	 7	 16	 76	 271	 201	 27.3	 23.1	 24.3
Aug.	 23	 46	 89	 223	 163	 22.9	 23.6	 23.0
Sept.	 30	 98	 73	 175	 154	 17.9	 20.7	 18.2
Oct.	 35	 98	 58	 114	 105	 9.4	 11.0	 11.2
Total/Average	 371	 632	 587	 1428	 1104	 18.8	 17.4	 19.1

	 North Platte

April	 68	 22	 55	 133	 141	 11.4	 6.4	 8.6
May	 17	 73	 85	 211	 175	 16.7	 15.1	 14.3
June	 21	 40	 94	 271	 226	 23.9	 21.1	 19.9
July	 34	 50	 73	 258	 223	 26.5	 23.3	 23.4
Aug.	 10	 27	 61	 228	 193	 22.9	 23.9	 22.5
Sept.	 2	 36	 40	 182	 167	 17.6	 20.0	 17.2
Oct.	 6	 27	 43	 110	 87	 8.7	 9.1	 10.0
Total/Average	 158	 275	 451	 1393	 1212	 18.2	 17.0	 16.56

Pollen shed and its timing with silking determines 
whether or not ovules will be fertilized (Abendroth 
et al, 2011), and is the stage that is most sensitive 
to water and heat stress which can reduce the num-
ber of kernels ear-1 (Westgate et al, 2004). At silking 
the potential number of kernels ear-1 is determined; 
however pollination problems and kernel abortion 
during early grain fill can reduce kernel number (An-
drade et al, 1999). Inadequate carbohydrate supply 
is usually the cause of kernel abortion which occurs 
during the reproductive stages of R2 (blister) and R3 
(milk), and usually occurs at the tip of the ear (Aben-
droth et al, 2011). Late-season conditions influence 
kernel weight as the final kernel weight is determined 
at physiological maturity (Eck, 1986; Novacek et al, 
2013). A stressful environment during grainfill can re-
sult in light kernel weights (Abendroth et al, 2011; An-
drade et al, 1999; Tsimba et al, 2013) while increased 
kernel weight results from high irradiance level, long 
grain-fill duration, and rapid plant and kernel growth 
rate (Egli, 2011; Novacek et al, 2013).

Studies using environments, water regimes, and 
hybrids have been used to determine the relation-
ship between grain yield and yield components. Hu 
and Buyanovsky (2003) determined that high yield-
ing years were characterized by environments with (1) 
less than average rainfall and warmer temperatures 
prior to and during planting; (2) above average rainfall 
and temperatures in May; (3) above average rainfall 
and cooler than average temperatures June through 
Aug; and (4) lower than average rainfall and higher 
temperatures in the grain fill period of Sept through 
Oct. Time periods differences in heat and rainfall, 

timing of irrigation, and maize growth stages have 
been found to differentially influence yield compo-
nents (Eck, 1986; Pandey et al, 2000; Moser et al, 
2006). It has been found that yield reductions from 
water stress were mostly due to reduced number 
of kernels and kernel weight with number of kernels 
having the greatest correlation with yield reduction 
(Pandey et al, 2000; Moser et al, 2006).  Eck (1986) 
indicated that yield component compensation may 
be present when water stress is applied as kernel 
weight increased when the number of kernels ear-1 
was decreased as a result of water stress in the veg-
etative growth stages. Heat stress lengthens the time 
interval between anthesis and silking, thereby reduc-
ing the number of kernels ear-1 (Cicchino et al, 2010) 
and grain yield (Cárcova and Otegui, 2001). Extreme 
temperatures of <15°C and >35°C during grain fill re-
duced kernel weight (Jones et al, 1984). Yield compo-
nents have been found to vary by hybrid and hybrid 
maturity (Reeves and Cox, 2013). Hybrids with dif-
ferent maturities reach critical stages such as silking 
and pollen shed at different times, thus timing of en-
vironmental stresses differentially influences the yield 
and yield components.

Maize plants in a field are influenced by inter-plant 
competition for solar radiation, nutrients, and water 
(Rajcan and Swanton, 2001). Optimal plant popula-
tion varies across environments and water regimes 
(Klein and Lyon, 2011; Barr et al, 2013). As maize 
plant populations increase more ears m-2 are pro-
duced (Cox, 1996; Novacek et al, 2013; 2014). The 
number of rows ear-1 is not greatly affected by plant 
population (Begna et al, 1997) and kernels row-1, ker-
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Platte treatments was winter wheat (Triticum aesti-
vum L). At Mead all plots were planted on 25 April in 
2012 and on 30 April 2013. At North Platte in 2012, 
the plots were planted on 4-5 May 2012 and on 14-15 
May 2013. In Mead, seeding rates were 90,000 plants 
ha-1 for irrigated water regime and 75,000 plants ha-1 

for the rainfed water regime. In North Platte, seeding 
rates were 80,000 plants ha-1 for the irrigated water 
regime and 35,000 plants ha-1 for the rainfed based 
upon recommendations of Barr et al (2013) and Klein 
and Lyon (2011).
Soil nutrients other than N and pH were above suf-
ficiency levels except for P at Mead in 2012, thus N 
was the most limiting nutrient. Nutrient applications 
were made based upon University of Nebraska rec-
ommendations (Shapiro et al, 2008). At Mead, N fer-
tilizer rates were based on an expected yield of 12.5 
Mg ha-1 for the irrigated treatments and 9.4 Mg ha-1 

for the rainfed treatments while North Platte rates 
were based on expected yields of 12.5 Mg ha-1 for 
irrigated and 7.5 Mg ha-1 for rainfed. At Mead, 170 
kg N ha-1 was broadcast applied to the irrigated plots 
and 100 kg N ha-1 broadcast applied to the rainfed 
plots as dry urea (46-0-0) on 26 April 2012 and 19 
April 2013. A broadcast application of 45 kg ha-1 P2O5 

was applied 24 May 2012 based on soil test recom-
mendation. At North Platte, 90 kg N ha-1 was applied 
to the rainfed plots and 200 kg N ha-1 was applied 
to the irrigated plots as surface application of urea 
ammonium nitrate solution (32-0-0). In addition, 46 l 
ha-1 of 10-34-0 starter fertilizer was also applied in 
the seed slice. Production practices were similar at 
both locations with conventional disk tillage used for 
soil preparation, and recommended pre-emergent 
and post-emergent herbicides used for weed control. 
Row spacing was 76 cm for both locations.
Grain yield was measured by mechanically harvesting 
the middle three rows of the plots, water content was 
measured, and grain yield for each plot adjusted to a 
water content of 155 g kg-1. Number of plants m-2 and 
ears m-2 were counted prior to harvest in three of the 
middle rows of the plots in Mead and two of the mid-
dle rows in North Platte in 2012. However, the number 
of ears m-2 was not counted at North Platte in 2013. 
Regression analysis from the other environments in 
this study indicated that the number of plants m-2 and 
ears m-2 were essentially equal (y = 0 + 1.008 x, R2 = 

Table 2 - Mean squares and level of probability for hybrid and water regime effects on maize grain yield and yield components 
in Mead and North Platte NE in 2012 and 2013
Source	 df	 Grain	 Ears	 Rows	 Ear	 Kernels	 Ear	 Kernels	 Kernel	
		  yield	 m-2 	 ear-1 	 circumference	 row-1	 Length	 ear-1	 weight

Environment (E)  	 3	 261**	 27.2**	 5.2*	 19.3**	 468**	 24.9*	 213253**	 298.9**

Water Regime (WR)	 1	 2214**	 275.6**	 9.8*	 104.7**	 496**	 109.2**	 340671**	 2012.8**
E x WR	 3	 249**	 31.6**	 4.3	 14.3**	 114	 18.6*	 134519**	 148.2**
Hybrid (H)	 3	 5*	 6.9**	 13.9**	 9.7**	 461**	 88.3**	 74623**	 11.0**
E x H	 9	 2	 0.8**	 0.5	 0.5**	 9	 2.7*	 2361	 15.6**
WR x H	 6	 1	 0.1	 0.4	  0.8**	 37	 2.9	 33140	 31.5**
E x WR x H	 3	 2	 0.1	 0.8	  0.2	 16	 1.6	 3261	 2.7
Block(WR x E)	 16	 1.3	 0.1	 1.4	  1.0	 40	 4.9	 12708	 6.9
Residual	 144	 0.7	 0.1	 0.5	  0.2	 11	 1.2	 3237	 2.7

nels ear-1 and kernel weight generally decrease with 
increasing plant populations (Novacek et al, 2013; 
2014)

The objective of this research was to determine 
the influence of environment, water regime, and hy-
brid on the yield components of waxy maize, and to 
better determine the interrelationship of waxy maize 
yield and yield components.

Field experiments were conducted in 2012 and 2013 
in rainfed and irrigated water regimes at the University 
of Nebraska Agriculture Research and Development 
Center (ARDC) near Mead, NE and the West Cen-
tral Research and Extension Center (WCREC) North 
Platte, Nebraska. Environments were considered 
to be location x year combinations. Separate fields 
were used for irrigated and rainfed water regimes at 
both locations. The experimental design was a ran-
domized complete block within water regimes (WR) 
and environments, with four hybrids and three rep-
lications. Plots were six-rows wide (4.6 m) by 9.1 m 
long. Irrigated water regimes were furrow irrigation 
at Mead and sprinkler irrigated at North Platte based 
on soil water depletion (Melvin and Yonts, 2009). The 
2012 growing season in Nebraska was extremely hot 
and dry (Table 3.1), thus a single application of 100 
mm ha-1 of irrigation was furrow-applied on 16 July 
at blister growth stage (R2) to reduce drought stress 
and approximate average growing conditions. The 
four Dupont Pioneer hybrids used were P0461EXR 
(104 day relative maturity), Pioneer P35F36 (105 day 
relative maturity), Pioneer P1162EXR (111 day rela-
tive maturity), and Pioneer P1395EXR (113 day rela-
tive maturity). These hybrids were selected to provide 
the widest variation in genetic background possible 
with commercially available waxy maize hybrids.
The predominant soil type at Mead was Tomek silt 
loam (fine, smectitic, mesic, Pachic, Argiudoll) with 
0 to 1% slopes, while the soil in North Platte was a 
Holdrege silt loam (fine-silty, mixed, superactive, me-
sic Typic Argiustoll) with 1 to 4% slopes for rainfed 
and a Cozad silt loam (course-silty, mixed, superac-
tive, mesic, Typic Huplustoll) with 0 to 1% for irrigat-
ed treatments. Soybean (Glycine max L Merrill) was 
the previous crop at Mead and irrigated North Platte 
environments. The previous crop in the rainfed North 

Materials and Methods
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Table 3 - Environment and water regime interaction effect on waxy maize grain yield and yield components (P ≤ 0.05).

	 Environment
	 Mead	 North Platte
Water Regime	  2012	  2013	 2012	 2013
			   Grain yield (Mg ha-1)

Irrigated	 12.9Ba†‡	 13.2Ba		  11.1Ca	 14.2Aa

Dryland	 9.6Ab	 10.1Ab		  3.0Bb	 1.5Cb

			   Ears m-2 (No.)
Irrigated	 7.6Aa	 6.4Ca		  7.5Aa	 7.1Ba

Dryland	 6.4Ab	 5.5Bb		  3.6Cb	 3.4Cb

			   Ear circumference (cm)
Irrigated	 14.5Ba	 15.2Aa		  14.5Ba	 15.0ABa

Dryland	 14.0Aa	 14.5Ab		  12.4Bb	 12.3Bb

			   Ear length (cm)
Irrigated	 16.7Aba	 16.5ABa		  15.6Ba	 17.2Aa

Dryland	 15.7Aa	 16.3Aa		  13.8Bb	 14.1Bb

			   Kernels ear-1 (No.)
Irrigated	 634Aa	 549Ba		  599ABa	 587ABa

Dryland	 633Aa	 533Ba		  505Bb	 355Cb

			  Kernel weight (g 100-kernels-1)

Irrigated	 32.0Ba	 34.9Aa		  30.7Ba	 34.1Aa

Dryland	 28.4Bb	 30.8Ab		  23.0Cb	 23.0Cb

† Within each row, means followed by the same uppercase letters are not significantly different (P > 0.05) between the different 
environments under each water regime. ‡ Within each column, means followed by the same lowercase letter are not significant 
different (P > 0.05) between water regimes for each environment.

0.97 with y indicating ears m-2 and x indicating plants 
m-2). Visual observations confirmed this relationship. 
Thus, plants m-2 and ears m-2 were considered to be 
equal for the North Platte 2013 environments as also 
previously done by Norwood (2001a). Six ear sam-
ples were collected from each plot, stored and used 
to measure yield components. Yield components 
measured were rows ear-1, kernels row-1, ear length, 
ear circumference, kernels ear-1, and kernel weight. 
Kernel rows, kernels row-1, and kernels ear-1 were 
hand counted, and ear length and middle-of-the ear 
circumference were measured prior to hand shelling 
for each ear. The number of kernels ear-1 were hand 
counted and 100 kernels were randomly selected 
from each ear and were used to determine the kernel 
weight. Water content was measured and 100-kernel 
weight was adjusted 155 g kg-1 water content.
Data were analyzed using PROC Mixed of SAS (SAS 
Institute, 2014). Analysis of variance was conducted 
with environment (E), hybrid (H), and plant population 
(P) and their interactions considered fixed effects, and 
with replication and interactions considered random 
effects. Paired-wise comparisons were used to assist 
with mean separation of discrete variable responses. 
Analysis of variance indicated that the North Platte 
rainfed water regime had different yield component 
responses than the Mead rainfed, Mead irrigated and 
North Platte irrigated water regimes, thus Pearson 
correlations were determined separately.

Results and Discussion
Seasonal Climatic Conditions

At Mead, the average rainfall was below the 30-yr 
average in 2012, while air temperatures were above 

average (Table 3). Rainfall was only 9% of average in 
July, 31% of average in Aug, and 41% of average in 
Sept during the critical pollination and grain fill growth 
stages, while temperatures were 0.6 to 3.0 °C greater 
in May through July. In 2013, seasonal rainfall was 
near the 30-yr average, but only 21% and 51% of 
average the in July and Aug. Although water stress 
was present in both years, it was far greater in 2012 
than 2013 as reflected by the >30% greater potential 
evapotranspiration and visual observations. Thus in 
2012, which led to the decision to apply a single ir-
rigation application to reduce drought stress and ap-
proximate average growing conditions. 

At North Platte, both 2012 and 2013 had lower 
than 30-yr average rainfall and higher temperatures 
(Table 1). In 2012, monthly rainfall was 6 to 47% of 
the 30-yr average in all months except April, and the 
growing season started with the soil profile at field 
capacity. Temperatures were greater than average, 
especially in May, June and July during vegetative 
growth and the critical pollination growth stages. In 
2013, monthly rainfall was higher than 2012 but still 
well below the 30-yr average. Low rainfall in April 
combined with the very dry 2012 growing season re-
sulted in the soil profile at the beginning of the grow-
ing season being below field capacity. Seasonal av-
erage temperatures were near the 30-yr average, but 
well above average in May, June and Sept. Potential 
evapotranspiration was greater in 2012 than 2013, 
but visual observations indicated that plants exhib-
ited more water stress in 2013 than in 2012, likely due 
the soil water status at the beginning of the growing 
season.

Yield and Yield Components
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Waxy maize grain yield differences were attrib-
uted to the three-way interaction E x WR x H (Table 
2), however, this interaction was broken down into 
environment x water regime (E x WR) and environ-
ment x hybrid (E x H) interactions to facilitate data 
presentation (Tables 3 and 4). The E x WR interaction 
indicated that grain yields were greater under the irri-
gated water regime than rainfed across environments 
(Table 3). Rainfed yields were greater at Mead than 
North Platte as would be expected by higher season-
al rainfall (Table 3) and 2012 irrigation at Mead to re-
duce water stress and approximate average growing 
conditions. With irrigation, grain yields were highest 
in North Platte in 2013, intermediate for Mead 2012 
and Mead 2013, and lowest for North Platte 2012, the 
latter likely associated with high temperatures during 
the early and mid-growing season (Table 1). North 
Platte 2013 irrigated yields were likely higher due to 
fewer cloudy days as less seasonal precipitation oc-
curred in this environment. In rainfed environments, 
Mead produced higher grain yields than North Platte, 
but grain yields across years were similar at both 
locations (Table 3). At Mead, the late-maturity waxy 
maize hybrids P1162EXR and P1395EXR produced 
higher yields than other hybrids, while at North Platte 
the hybrids P1162EXR and P0461EXR produced the 
highest grain yields (Table 4). Larson and Clegg (1999) 

and Tsimba et al (2013) found that late-maturity hy-
brids were affected negatively more by water stress 
than early-maturity hybrids.  However, yield potential 
and water stress tolerance are important criteria to 
consider along with maturity classification for reduc-
ing potential for low grain yields under water-limited 
environments. In general, E and WR had a larger influ-
ence on grain yield than did hybrid.

Differences in the number of ears m-2 were attrib-
uted to the E x WR and WR x H interactions (Table 
2). More ears m-2 were produced under irrigated and 
Mead rainfed environments than in the North Platte 
rainfed environment (Table 3) at least partially due to 
higher seeding rates used under irrigated and higher 
rainfall conditions than in the North Platte rainfed 
environment. More ears m-2 were produced in 2012 
than in 2013 under both water regimes at Mead and 
under irrigated conditions at North Platte. The waxy 
maize hybrid P35F36 produced the fewest ears m-2 
in three out of four environments, with no difference 
among hybrids in the North Platte 2012 environment 
(Table 4). Since the germination percentage of seed 
was similar, this implies that either this P35F36 hybrid 
had seed with lower vigor or was less tolerant to in-
terplant competition during the growing season. The 
number of ears m-2 was associated with grain yield in 
the Mead and North Platte 2012 environments and 

Table 4 - Environment and hybrid interaction effect influence on waxy maize grain yield and yield components (P ≤ 0.05).		
	 Environment

	 Mead	 North Platte
	 Hybrid 
(Relative Maturity)	  2012	  2013	 2012	 2013
			   Grain yield (Mg ha-1)

P0461EXR (104)	 10.8Ab†‡	 11.4Ab		  7.3Cab	 8.2Ba

P35F36 (105)	 10.6Ab	 11.3Ab		  6.7Bb	 7.7Bab

P1162EXR (111)	 11.8Aa	 12.1Aa		  6.9Bab	 7.5Bb

P1395EXR (113)	 11.9Aa	 11.8Aab		  7.4Ba	 8.1Bab

			   Ears m-2 (No.)
P0461EXR (104)	 7.2Aa	 6.0Bb		  5.6Ca	 5.6Ca

P35F36 (105)	 6.4Ab	 5.1Cc		  5.4Ba	 4.6Dc

P1162EXR (111)	 7.3Aa	 6.2Bb		  5.6Ca	 5.3Db

P1395EXR (113)	 7.1Aa	 6.5Ba		  5.5Ca	 5.6Ca

			   Ear circumference (cm)
P0461EXR (104)	 14.4Bab	 15.1Aa		  13.8Ca	 14.1BCa

P35F36 (105)	 14.1Bbc	 15.1Aa		  13.4Cb	 13.7BCb

P1162EXR (111)	 14.6Ba	 15.2Aa		  14.0Ca	 13.6Cb

P1395EXR (113)	 13.8Ac	 14.0Ab		  12.6Bc	 13.0Bc

			   Ear length (cm)
P0461EXR (104)	 14.7Ab	 15.1Ac		  13.2Bb	 14.6Ab

P35F36 (105)	 17.2ABa	 18.1Aa		  15.8Ca	 16.9BCa

P1162EXR (111)	 15.0Ab	 15.2Ac		  13.5Bb	 15.1Ab

P1395EXR (113)	 18.0Aa	 17.2ABb		  16.3Ba	 16.1Ba

			  Kernel weight (g 100-kernels-1)

P0461EXR (104)	 29.6Bb	 31.8Ac		  26.9Cb	 29.2Ba

P35F36 (105)	 28.9Bb	 34.0Aa		  25.7Cb	 29.3Ba

P1162EXR (111)	 31.0Ba	 33.1Aab		  28.9Ca	 28.3Cab

P1395EXR (113)	 31.2Aa	 32.6Abc		  25.8Cb	 27.6Bb

† Within each row, means followed by the same uppercase letters are not significantly different (P > 0.05) between the different 
environments within each hybrid. ‡ Within each column, means followed by the same lowercase letters are not significantly 
different (P > 0.05) between the different environments within each hybrid.
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water regimes (Table 5) suggesting that early season 
stress impacted grain yield (Evans et al, 2003). In con-
trast, the number of ears m-2 was not associated with 
grain yield in the North Platte 2013 rainfed environ-
ment and water regime when more visual plant wa-
ter stress was observed, suggesting that late-season 
stress was more important than early-season stress 
in this environment (Pandey et al, 2000). 

The number of rows ear-1 was attributed to the 
main effects of E, WR, and H (Table 2). Hybrid had 
the largest influence on the number of rows ear-1 with 
P0461EXR > P1162EXR = P35F36 > P1395EXR (16.1 
> 15.6 = 15.3 >14.8 rows ear-1). The number of rows 
ear-1 was greatest in the Mead 2012 = 2013 > North 
Platte 2013 > North Plate 2012 environments (15.7 = 
15.7 > 15.3 = 15.0 rows ear-1). The irrigated WR pro-
duced 0.5 more rows ear-1 than rainfed. These results 
confirm expectations that differences in the number 
of rows ear-1 would be small and largely genetically 
controlled (Abendroth et al, 2011; Lack et al, 2012). 

Ear circumference differences were attributed to E 
x WR, E x H, and WR x H interactions (Table 2). Irriga-
tion increased ear circumference over rainfed (Tables 
3 and 6), with the increase being greater in the drier 
North Platte environments than at Mead where ear 
circumferences were similar in 2012 (Table 3) at least 
partially due to the irrigation application to save the 
crop. The waxy maize hybrid P1395EXR produced 
the smallest ear circumference in all environments, 
while no hybrid consistently produced the greatest 
ear circumference (Table 4). The hybrid P1395EXR 
also produced lowest number of rows ear-1, and the 
number of rows ear-1 was highly correlated with ear 
circumference (Table 5). 

Kernels ear-1 is a product of the number of rows 
ear-1 and kernels row-1. Since the number of rows 
ear-1 is largely genetically controlled (Abendroth et al, 
2011) variation in the number of kernels ear-1 would 
be expected to be largely due to the number of ker-
nels row-1 and to be related to ear length as shown by 
correlations in this study (Table 5) and as observed in 
previous experiments (Begna et al, 1997; Lack et al, 
2012). Differences in the number of kernels ear-1 were 
attributed to E x WR interaction, and H main effects 
(Table 2). In the higher rainfall Mead environments, 
differences in kernels ear-1 between irrigated and 
rainfed water regimes was minor as previously found 
while irrigation resulted in large increases in kernels 

ear-1 in North Platte environments, especially in 2013 
(Table 3). Likely the more stressful North Platte en-
vironments encountered greater kernel abortion dur-
ing early grain fill stages than at Mead (Abendroth et 
al, 2011). The Mead 2012 environment produced the 
greatest number of kernels ear-1 both in irrigation and 
rainfed WR, while the rainfed North Platte 2013 envi-
ronment produced the fewest number of kernels ear‑1. 
The number of kernels produced ear-1 was greatest 
for P35F36 > P1395EXR = P1162EXR > P0461EXR 
(601 > 549 = 546 > 501 kernels ear-1). P35F36 pro-
duced the lowest number of ears m-2 (Table 4) thus 
yield component compensation may have resulted in 
the larger number of kernels ear-1.

Differences in ear length were attributed to E x 
WR and E x H interactions (Table 2). Irrigated WR 
produced longer ears than under rainfed in the North 
Platte 2012 and 2013 environments, while irrigated 
and rainfed ear lengths were similar in the Mead 
2012 and 2013 environments (Table 3) likely the re-
sult of less seasonal rainfall in North Platte (Table 1). 
The Mead environments generally produced the lon-
gest ear lengths (Tables 3 and 4). The waxy hybrids 
P35F36 and P1395EXR produced longer ear lengths 
than P0461EXR and P1162EXR (Table 4). The hybrid 
P35F36 produced the fewest number of ears m-2 and 
P1395EXR produced the lowest number of rows ear-1 
and circumference, thus if yield component compen-
sation was present, longer ears would be expected 
for this hybrid. Correlation analysis (Table 5) indicated 
that the ear length was negatively correlated with the 
number of rows ear-1 for the Mead and North Platte 
irrigated environments. In the North Platte environ-
ments under the rainfed water regime, the ear length 
was positively associated with both the number of 
rows ear-1 and ear circumference.

The number of kernels row-1 was attributed to WR 
x H interaction and E main effects (Table 3). Environ-
ments influenced the number of kernels row-1 with 
Mead 2012 = Mead 2013 = North Platte 2012 > North 
Platte 2013 (35.6 = 35.3 = 33.5 > 28.9 kernels row-1), 
largely a reflection of dry conditions and a single ir-
rigation in the Mead 2012 environment (Table 1). The 
WR x H interaction indicated that P35F36 produced 
the greatest number of kernels row-1 and P1395EXR 
the second greatest number of kernels row-1 in both 
water regimes, while P1162EXR produced the few-
est kernels row-1 under the rainfed water regime and 

Table 5 - Correlation coefficients between yield components measured in the Mead Irrigated and Dryland Environments 
and North Platte Irrigated environments combined (above the diagonal) and the North Platte Dryland Environments (below 
diagonal).
	 Grain yield	 Ears m-2	 Rows ear-1	 Ear circumference	 Kernels row-1	 Ear length	 Kernels ear-1	 Kernel weight	
Grain Yield	 ---	 0.43**	 -0.08	 0.38**	 -0.13	 0.25**	   0.07	 0.67**
Ears m-2	 0.21	 ---	 0.00	 -0.04	 -0.20*	 -0.17*	   0.11	 0.10
Rows ear-1	 0.32*	 0.12	 ---	 0.43**	 -0.19*	 -0.42**	   0.08	 -0.12*
Ear circumference	 0.59**	 -0.06	 0.77**	 ---	 -0.23**	 -0.11	 -0.16	 0.68**
Kernels row-1	 0.72**	 0.03	 0.40**	 0.64**	 ---	 0.70**	   0.61**	 -0.04
Ear length	 0.31*	 -0.11	 0.43**	 0.53**	   0.72**	 ---	   0.50**	 0.32**
Kernels ear-1	 0.78**	 0.05	 0.46**	 0.71**	   0.94**	 0.62**	 ---	 -0.20*
Kernel weight	 0.51**	 -0.10	 0.49**	 0.84**	   0.44**	 0.39*	   0.45**	 ---

* and ** indicate P ≤ 0.05 and 0.01.
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P0461EXR and P1162EXR produced the fewest un-
der the irrigated water regime (Table 6).

Kernel weight differences were attributed to E 
x WR, E x H, and WR x H interaction effects (Table 
2) Irrigation increased kernel weights in all environ-
ments (Table 3), with the difference in North Platte 
2013 > North Platte 2012 > Mead 2013 > Mead 2012 
environments reflecting differences in late-season 
water availability (Table 1). Kernel weight of drought 
stressed plants is usually lower than those of well 
watered plants (Moser et al, 2006; Lack et al, 2012). 
The hybrid P0461EXR produced one of the lightest 
kernel weights in Mead and North Platte 2012 envi-
ronments, while the lowest in the North Platte 2013 
environment was P1395EXR (Table 4). Late-maturing 
hybrids produced greater kernel weights under irriga-
tion due to little or no water stress during grain fill, 
while earlier maturity hybrids produced greater kernel 
weights under all rainfed environments (Table 6). Ap-
parently early-maturing hybrids reached the critical 
flowering time and maturity earlier, thereby using less 
water and reduced late-season water stress. Nor-
wood (2001b) found less water use by early-maturity 
maize hybrids, but that late-maturing hybrids in his 
study produced the heaviest kernels under rainfed 
conditions in less severe environments than those in 
North Platte in this study (Norwood, 2001a). 

Correlation analysis indicated different associa-
tions between grain yield and yield components in 
the Mead and North Platte irrigated environments 
and water regimes, and the North Platte rainfed en-
vironment and water regime (Table 5). Grain yield in 
the Mead and North Platte irrigated environments 
and water regimes was positively associated with 
the number of ears m-2, ear circumference and ear 
length, and kernel weight, with kernel weight having 
the highest correlation while the number of kernels 
ear-1 was not correlated. Tsimba et al (2013) have also 
found kernel weight to have a high correlation with 
grain yield however they found kernels m-2 (ears m-2 
x kernels ear-1) was more correlated with grain yield. 
These results suggest that late-season stress and 

water availability, and early season stress were pres-
ent, with desirable conditions being present during 
mid-season due to rainfall, irrigation, and/or presence 
of soil stored water in the high available water holding 
capacity soils used in this study.

In the North Platte rainfed environment and wa-
ter regime, grain yield was associated with all yield 
components except the number of ears m-2 (Table 5). 
The number of kernels ear-1 and kernels row-1 had the 
highest correlation with grain yield, suggesting that 
early-season stress was minimal, perhaps due to 
the near normal rainfall in April 2012 and May 2013 
(Table 1). These results suggest that the North Platte 
rainfed environments experienced mid-season stress 
that extended into the late-season, consistent with 
results of Pandey et al (2000) and Moser et al (2006), 
who found maize yield reductions were associated 
with reductions in the number of kernels ear-1 and to 
a lesser extent, with kernel weight.

Conclusion
Grain yield and yield components of waxy maize 

was influenced greatly by environment and water re-
gime, as is true for dent maize. Response of Mead 
and North Platte irrigated environments was similar 
for grain yield and components while the very dry 
North Platte rainfed environments were different. 
Grain yield and all yield components except for the 
number of rows ear-1 were markedly reduced in the 
North Platte rainfed environment and water regime 
and all yield components except ears m-2 were found 
to be associated with grain yield while only ears m-2, 
ear circumference, ear length and kernel weight were 
found to be associated with grain yield under the oth-
er environments and water regimes used in the study. 
High yields of waxy maize were produced at Mead 
and North Platte when irrigated, thus if small price 
premiums are present, this is a viable specialty crop 
that has only few production practice differences 
from those for commodity field maize. Waxy maize 
has an equal feeding value to dent corn (Fergason, 
2001), so production above the contracted amount 
can easily be marketed for livestock feed.

Table 6 - Hybrid and water regime interaction effect influence on waxy maize grain yield and yield components (P ≤ 0.05).

	 Waxy maize hybrid (relative maturity)
Water Regime	 P0461EXR (104)	 P35F36 (105)	 P1162EXR (111)	 P1395EXR (113)

	 Ear circumference (cm)

Irrigated	 15.0Ba†‡	 14.8Ba	 15.2Aa	 14.2Ca

Dryland	 13.7Ab	 13.4Bb	 13.5ABb	 12.5Cb

	 Kernels row-1 (n°)

Irrigated	 31.7Ca	 39.2Aa	 31.6Ca	 37.4Ba

Dryland	 30.9Ba	 34.7Ab	 28.7Cb	 32.6ABb

	 Kernel weight (g 100 kernels-1)

Irrigated	 31.9Ba	 32.2Ba	 34.3Aa	 33.4Aa

Dryland	 26.8Ab	 26.8Ab	 26.4Ab	 25.2Bb

† Within each row, means followed by the same uppercase letters are not significantly different (P > 0.05) between the different 
hybrids within each water regime.‡ Within each column, means followed by the same lowercase letters are not significantly 
different (P > 0.05) between the different water regimes within each hybrid.
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