Review papers

Statistical inferential techniques for approaching forest mapping. A review of methods


Abstract


The increasing availability of remote sensing data at no or low costs can be used as ancillary data in order to spatialize and improve the estimation of forest attributes and without increasing the sampling effort and costs. In this review paper, a description of the main statistical inferential techniques for approaching forest mapping is proposed. This article reviews the most used forest mapping methods based on the sole spatial information as well as techniques exploiting auxiliary information from remotely sensed data. The advantages and drawbacks of each method have been described on the basis of several factors, such as the aims of the investigation and the area under examination. Two main groups were here discussed with model-based methods on one side and model-assisted methods on the other, moving the attention from the model used to interpolate surfaces to the sampling scheme. Model-based methods include kriging, locally weighted regression, K-NN, decision trees and neural networks, while the inverse distance weighting interpolator is presented in the model-assisted group.

Reliable and up-to-date information on forest characteristics are mandatory tools for any decisional process. The main input data of such systems are wall-to-wall maps depicting the spatial structures of forests and additional elements. Actually, if the original aim of forest inventories was to estimate harvestable timber amounts, a general interest towards multipurpose surveys is mandatory. Such information must deal with increased costs and more time-consuming procedures.

 


Keywords

spatial interpolation; forest inventories; model-based inference; design-based inference; remote sensing; wall-to-wall forest attributes

Full Text:

PDF


DOI: http://dx.doi.org/10.12899/asr-1738

References


Agatonovic-Kustrin S., Beresford R. 2000 - Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. Journal of Pharmaceutical and Biomedical Analysis 22 (5): 717-727. doi: 10.1016/S0731-7085(99)00272-1

AhmedS.,de Marsily G. 1987- Comparison of Geostatistical methods for estimating transmissivity using data on transmissivity and specific capacity. Water Resources Research 23 (9):1717-1737. doi: 10.1029/WR023i009p01717

Baffetta F. Fattorini L., Franceschi S., Corona P. 2009 - Design-based approach to k-nearest neighbors technique for coupling field and remotely sensed data in forest surveys. Remote Sensing of Environment 113 (3): 463-475. doi: 10.1016/j.rse.2008.06.014

Baffetta F., Corona P., Fattorini L. 2012 - A matching procedure to improve k-nn estimation of forest attribute maps. Forest Ecology and Management 272: 35-50. doi: 10.1016/j.foreco.2011.06.037

Barabesi L., Franceschi S. 2011 - Sampling properties of spatial total estimators under tessellation stratified designs. Environmetrics 22 (3): 271-278. doi: 10.1002/env.1046

Barabesi L., Franceschi S., Marcheselli M. 2012 - Properties of design-based estimation under stratified spatial sampling. The Annals of Applied Statistics 6 (1): 210-228. doi: 10.1214/11-AOAS509

Baret F. 1995 - Use of spectral reflectance variation to retrieve canopy biophysical characteristics. In: “Advances in environmental remote sensing”. Danson F.M., Plummer S.E. Eds, Wiley, Chichester: 33-51.

Biondi F., Myers D.E., Avery C.C. 1994 - Geostatistically modeling stem size and increment in an old-growth forest. Canadian Journal of Forest Research 24 (7): 1354-1368. doi: 10.1139/x94-176

BlackardJ.A., Dean D.J. 1999 - Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables. Computers and Electronics in Agriculture 24 (3):131-151. doi: 10.1016/S0168-1699(99)00046-0

Breiman L. 1996 - Bagging predictors. Machine Learning 24 (2): 123-140. doi: 10.1023/A:1018054314350

Breiman L. 2001 - Random forests. Machine Learning 45 (1): 5-32. doi: 10.1023/A:1010933404324

Breiman L., Friedman J.H., Olshen R.A., Stone C.J. 1984 - Classification and Regression Trees. Wadsworth, Belmont. 368 p.

BrosofskeK.D., FroeseR.E., FalkowskiM.J., Banskota A. 2014 - A review of methods for mapping and prediction of inventory attributes for operational forest management. Forest Science 60 (4): 733-756. doi: 10.5849/forsci.12-134

Brunsdon C., FotheringhamA.S., Charlton M.E. 1996 - Geographically weighted regression: A method for exploring spatial nonstationarity. Geographical Analysis 28 (4): 281-298. doi: 10.1111/j.1538-4632.1996.tb00936.x

Brus D.J., HengeveldG.M., WalvoortD.J.J., GoedhartP.W., Heidema A.H., NabuursG.J.,Gunia K. 2012 - Statistical mapping of tree species over Europe. European Journal of Forest Research 131 (1): 145-157. doi: 10.1007/s10342-011-0513-5

Carbonell J.G., Michalski R.S., Mitchell T.M. 1983 - An Overview of Machine Learning. In: “Machine Learning”. Symbolic Computation, Michalski R.S., CarbonellJ.G., Mitchell T.M. Eds., Springer, Berlin. 3-23. doi: 10.1007/978-3-662-12405-5_1

Carvalho L.M.T. 2001 - Mapping and monitoring forest remnants: A multiscale analysis of spatio-temporal data. PhD thesis. Wageningen University, 138 p.

Chave J., Andalo C., Brown S., Cairns M.A., ChambersJ.Q., Eamus D., Fölster H., Fromard F., Higuchi N., Kira T., Lescure J.P., NelsonB.W., OgawaH.,Puig H., Riéra B., Yamakura T. 2005 - Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145 (1): 87-99. doi: 10.1007/s00442-005-0100-x

Chirici G., Barbati A., Corona P., Marchetti M., Travaglini D., Maselli F., Bertini R. 2008 - Nonparametric and parametric methods using satellite images for estimating growing stock volume in alpine and Mediterranean forest ecosystems. Remote Sensing of Environment 112 (5): 2686-2700. doi: 10.1016/j.rse.2008.01.002

Chirici G., Scotti R., Montaghi A., Barbati A., Cartisano R., Lopez G., Marchetti M., McRoberts R.E. Olsson H., Corona P. 2013 - Stochastic gradient boosting classification trees for forest fuel types mapping through airborne laser scanning and IRS LISS-III imagery. International Journal of Applied Earth Observation and Geoinformation 25: 87-97

Clement F., Orange D., Williams M., Mulley C., Epprecht 2009 - Drivers of afforestation in Northern Vietnam: Assessing local variations using geographically weighted regression. Applied Geography 29 (4): 561-576. doi: 10.1016/j.apgeog.2009.01.003

Cleveland W.S., Devlin S.J. 1988 - Locally weighted regression: an approach to regression analysis by local fitting. Journal of the American statisticalassociation 83 (403): 596-610. doi: 10.1080/01621459.1988.10478639

Corona P. 2000 - Introduzione al rilevamento campionario delle risorse forestali. EdizioniCUSL, Firenze. 283 p.

Corona P. 2010 - Integration of forest mapping and inventory to support forest management. iForest 3: 59-64. doi: 10.3832/ifor0531-003

Corona P. 2016 - Consolidating new paradigms in large-scale monitoring and assessment of forest ecosystems. Environmental Research 144 (Pt B): 8-14. doi: 10.1016/j.envres.2015.10.017.

Corona P. 2018 - Communicating facts, findings and thinking to support evidence-based strategies and decisions. Annals of Silvicultural Research 42: 1-2. doi: 10.12899/ASR-1617.

Corona P., Chirici G., Marchetti M. 2002 - Forest ecosystem inventory and monitoring as a framework for terrestrial natural renewable resource survey programmes. Plant Biosystems 136 (1): 69-82. doi: 10.1080/11263500212331358531

Corona P., Chirici G., McRoberts R.E., Winter S., Barbati A. 2011 - Contribution of large-scale forest inventories to biodiversity assessment and monitoring. Forest ecology and management 262 (11): 2061-2069. doi: 10.1016/j.foreco.2011.08.044

Corona P., Fattorini L., Franceschi S., Chirici G., Maselli F., Secondi L. 2014 - Mapping by spatial predictors exploiting remotely sensed and ground data: A comparative design-based perspective. Remote sensing of Environment 152: 29-37. doi: 10.1016/j.rse.2014.05.011

Cressie N. 1990 - The origins of kriging. Mathematical Geology 22 (3): 239-252. doi: 10.1007/BF00889887

Cressie N. 1993 - Statistics for spatial data. Wiley, New York. 900 p. doi: 10.1002/9781119115151

Deutsch C., Journel A. 1992 - Geostatistical Software Library and User’s Guide. Oxford University Press, New York. 340 p.

Fattorini L., Marcheselli M., Pisani C. 2006 - A three-phase sampling strategy for large-scale multiresource forest inventories. Journal of Agricultural, Biological, and Environmental Statistics 11 (3): 296-316. doi: 10.1198/108571106X130548

Fattorini L., Marcheselli M., Pratelli L. 2018a - Design-based maps for finite populations of spatial units. Journal of the American Statistical Association 113 (522): 686-697. doi: 10.1080/01621459.2016.1278174

Fattorini L., Marcheselli M., Pisani C., Pratelli L. 2018b - Design-based maps for continuous spatial populations. Biometrika 105 (2): 419-429. doi: 10.1093/biomet/asy012

Fix E., Hodges J.L. 1951 - Discriminatory analysis. Nonparametric discrimination: consistency properties. Report Number 4, Project 21-49-004. USAF School of Aviation Medicine. Randolph Field, Texas.

Foody G.M. 2003 - Geographical weighting as a further refinement to regression modelling: An example focused on the NDVI-rainfall relationship. Remote Sensing of Environment 88 (3): 283-293. doi: 10.1016/j.rse.2003.08.004

Foody G.M., Cutler M.E., McMorrow J., Pelz D., Tangki H., Boyd D.S., Douglas I. 2001 - Mapping the Biomass of Bornean Tropical Rain Forest from Remotely Sensed Data. Global Ecology and Biogeography 10 (4): 379-387.

Franco-Lopez H., EkA.R., Bauer M.E. 2001 - Estimation and mapping of forest stand density, volume, and cover type using the k-nearest neighbors method. Remote Sensing of Environment 77 (3): 251-274. doi: 10.1016/S0034-4257(01)00209-7

Freeman E.A., MoisenG.G. 2007 - Evaluating Kriging as a Tool to Improve Moderate Resolution Maps of Forest Biomass. Environmental Monitoring and Assessment 128 (1-3): 395-410. doi:10.1007/s10661-006-9322-6

Freund Y., Schapire R. 1996 - Experiments with a new boosting algorithm. Proceedings of the 13th International Conference on Machine Learning, Bari: 148–156.

Garcia-Gutierrez J., Martínez-Álvarez F., Troncoso A., RiquelmeJ.C. 2014 - (2014) A Comparative Study of Machine Learning Regression Methods on LiDAR Data: A Case Study. In: “International Joint Conference SOCO’13-CISIS’13-ICEUTE’13. Advances in Intelligent Systems and Computing, vol. 239”, Herrero Á. et al. Eds., Springer-Cham. 249-258. doi: 10.1007/978-3-319-01854-6_26

Gauch H.G. 1982 - Multivariate analysis in community ecology. Cambridge University Press, New York. 298 p. doi: 10.1017/CBO9780511623332

Gjertsen A.K., Tomppo E.O., Tomter S. 1999 - National forest inventory in Norway: using sample plots, digital maps, and satellite images. IEEE 1999 International Geoscience and Remote Sensing Symposium, Hamburg. doi: 10.1109/IGARSS.1999.774421.

Goovaerts P. 1997 - Geostatistics for natural resources evaluation. Oxford university press, New York. 483 p.

Görgens E.B., Montaghi A., Rodriguez L.C.E. 2015 - A performance comparison of machine learning methods to estimate the fast-growing forest plantation yield based on laser scanning metrics. Computers and Electronics in Agriculture 116: 221-227. doi: 10.1016/j.compag.2015.07.004

Gregoire T.G., Valentine H.T. 2008 - Sampling strategies for natural resources and the environment. Chapman & Hall, New York. 494 p.

Hastie T.J., Tibshirani R.J., Friedman J.H. 2009 - The elements of statistical learning: data mining, inference and prediction 2nd ed. Springer, New York. 745 p. doi: 10.1007/978-0-387-84858-7

Helmer E.H., RuzyckiT.S., WunderleJ.M., Vogesser S., Ruefenacht B., Kwit C., Brandeis T.J., EwertD.N. 2010 - Mapping tropical dry forest height, foliage height profiles and disturbance type and age with a time series of cloud-cleared Landsat and ALI image mosaics to characterize avian habitat. Remote Sensing of Environment 114 (11): 2457–2473. doi: 10.1016/j.rse.2010.05.021

Hengl T., Heuvelink G.B.M., Stein A. 2003 - Comparison of kriging with external drift and regression kriging. Technical report. International Institute for Geo-information Science and Earth Observation (ITC), Enschede.

Hernandez-Stefanoni J.L., Ponce-Hernandez R. 2006 - Mapping the Spatial Variability of Plant Diversity in a Tropical Forest: Comparison of Spatial Interpolation Methods. Environmental Monitoring and Assessment 117 (1-3): 307-334. doi: 10.1007/s10661-006-0885-z

Holmgren P., Persson R. 2002 - Evolution and prospects of global forest assessments. Unasylva 53 (210): 3-9. url: http://www.fao.org/docrep/005/y4001e/y4001e02.htm

Hotelling H. 1936 - Relations between two sets of variates. Biometrika 28 (3): 321–377. doi:10.1093/biomet/28.3-4.321

Huijbregts C.J., Matheron G. 1971 - Universal kriging (an optimal method for estimating and contouring in trend surface analysis). Proceedings of ninth international symposium on techniques for decision-making in the mineral industry, The Canadian institute of mining and metallurgy, 12: 159-169.

Hudak A.T., Lefsky M.A., Cohen W.B., Berterretche M. 2002 - Integration of lidar and Landsat ETM+ data for estimating and mapping forest canopy height. Remote Sensing of Environment 82 (2-3): 397-416. doi: 10.1016/S0034-4257(02)00056-1

Hudak A.T., Crookston N.L., Evans J.S., Hall D.E., FalkowskiM.J. 2008 - Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data. Remote Sensing of Environment 112 (5): 2232-2245. doi: 10.1016/j.rse.2007.10.009

Ingram J.C., Dawson T.P., Whittaker R.J. 2005 - Mapping tropical forest structure in southeastern Madagascar using remote sensing and artificial neural networks. Remote Sensing of Environment 94 (4): 491-507. doi: 10.1016/j.rse.2004.12.001

Jensen J.R., Qiu F., JiM.H. 1999 - Predictive modelling of coniferous forest age using statistical and artificial neural network approaches applied to remote sensor data. International Journal of Remote Sensing 20: 2805-2822. doi: 10.1080/014311699211804

Journel A.G., HuijbregtsC.J. 1978 - Mining Geostatistics. Academic Press, London. 600 p.

Kangas A., Maltamo M. 2007 - Forest inventory. Methodology and applications. Springer, Dordrecht. 362 p. doi: 10.1007/1-4020-4381-3

Katila M., Tomppo E.O. 2001 - Selecting estimation parameters for the Finnish multisource national forest inventory. Remote Sensing of Environment, 76 (1): 16–32. doi: 10.1016/S0034-4257(00)00188-7

Kleinn C. 2002 - New technologies and methodologies for national forest inventory. Unasylva 53 (210): 10-15. url: http://www.fao.org/docrep/005/y4001e/Y4001E03.htm

Köhl M., Magnussen S.S., Marchetti M. 2006 - Sampling methods, remote sensing and GIS multiresource forest inventory. Springer, Heidelberg. 373 p. doi: 10.1007/978-3-540-32572-7

Krige D.G. 1978 - Lognormal-de Wijsiangeostatistics for ore evaluation. South African Institute of Mining and Metallurgy Monograph Series, Johannesburg. 60 p.

Lund G. 1998 - A comparison of multipurpose resource inventories (MRIs) throughout the world. EFI working paper 14, Joensuu.

Lochhead K., LeMay V., Bull G., Schwab O., Halperin J. 2018 - Multivariate estimation for accurate and logically consistent forest-attributes maps at macroscales. Canadian Journal of Forest Research 48 (4): 345-359. doi: 10.1139/cjfr-2017-0221

Mandallaz D. 2000 - Estimation of the spatial covariance in Universal Kriging: Application to forest inventory. Environmental and Ecological Statistics 7 (3): 263-284. doi: 10.1023/A:1009619117138

Mas J.F., Puig H., Palacio J.L., Sosa-López A. 2004 - Modelling deforestation using GIS and artificial neural networks. Environmental Modelling & Software19 (5): 461-471. doi: 10.1016/S1364-8152(03)00161-0

Maselli F. 2002 - Improved estimation of environmental parameters through locally calibrated multivariate regression analyses. Photogrammetric engineering and Remote Sensing 68 (11): 1163-1171.

Maselli F., Chiesi M. 2006 - Evaluation of statistical methods to estimate forest volume in a Mediterranean region. IEEE Transactions on Geoscience and Remote Sensing 44 (8): 2239-2250. doi: 10.1109/TGRS.2006.872074

Maselli F., Chirici G., Bottai L., Corona P., Marchetti M. 2005 - Estimation of Mediterranean forest attributes by the application of k‐NN procedures to multitemporal Landsat ETM+ images. International Journal of Remote Sensing 26 (17): 3781-3796. doi: 10.1080/01431160500166433

Maselli F., Chiesi M., Corona P. 2014 - Use of geographically weighted regression to enhance the spatial features of forest attribute maps. Journal of Applied Remote Sensing 8 (1): 083533 doi: 10.1117/1.JRS.8.083533

Matheron G. 1963 - Principles of geostatistics. Economic Geology 58 (8): 1246-1266. doi: 10.2113/gsecongeo.58.8.1246

Matheron G. 1969 - Le KrigeageUniversel. Cahiers du Centre de MorphologieMathématique. Fontainebleau.

Mattioli W., Quatrini V., Di Paolo S., Di Santo D., Giuliarelli D., Angelini A., Portoghesi P., Corona P. 2012 - Experimenting the design-based k-NN approach for mapping and estimation under forest management planning. iForest 5 (1): 26-30. doi: 10.3832/ifor0604-009

McCulloch W., Pitts W. 1943 - A logical calculus of ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 5 (4): 115-133. doi:10.1007/BF02478259

McInerney D.O., Nieuwenhuis M. 2009 - A comparative analysis of kNN and decision tree methods for the Irish National Forest Inventory. International Journal of Remote Sensing 30 (19): 4937-4955. doi: 10.1080/01431160903022936

McRoberts R.E. 2012 - Estimating forest attribute parameters for small areas using nearest neighbors techniques. Forest Ecology and Management 272: 3-12. doi: 10.1016/j.foreco.2011.06.039

McRoberts R.E., Tomppo E.O. 2007 - Remote sensing support for national forest inventories. Remote sensing of environment 110 (4): 412-419. doi: 10.1016/j.rse.2006.09.034

McRoberts R.E., Tomppo E.O., Finley A.O., Heikkinen J. 2007 - Estimating areal means and variances of forest attributes using the k-nearest neighbours technique and satellite imagery. Remote Sensing of Environment 111 (4):466-480. doi: 10.1016/j.rse.2007.04.002

McRoberts R.E., Tomppo E.O., Næsset E. 2010a - Advances and emerging issues in national forest inventories. Scandinavian Journal of Forest Research 25 (4): 368-381. doi: 10.1080/02827581.2010.496739

McRoberts R.E., Cohen W.B., Næsset E., StehmanS.V., Tomppo E.O. 2010b - Using remotely sensed data to construct and assess forest attribute maps and related spatial products. Scandinavian Journal of Forest Research 25 (4): 340-367. doi: 10.1080/02827581.2010.497496

Meng Q., Cieszewski C., Madden M. 2009 - Large area forest inventory using Landsat ETM+: A geostatistical approach. ISPRS Journal of Photogrammetry and Remote Sensing 64 (1): 27-36. doi: 10.1016/j.isprsjprs.2008.06.006

Moeur M., Stage A.R. 1995 - Most similar neighbour: an improved sampling inference procedure for natural resource planning. Forest Science 41 (2): 337-359. doi: 10.1093/forestscience/41.2.337

Odeh I.O.A., McBratney A.B., Chittleborough D.J. 1995 - Further results on prediction of soil properties from terrain attributes: Heterotopiccokriging and regression-kriging. Geoderma 67 (3): 215-226. doi: 10.1016/0016-7061(95)00007-B

Ohmann J.L., Gregory M.J. 2002 - Predictive mapping of forest composition and structure with direct gradient analysis and nearest neighbor imputation in coastal Oregon, USA. Canadian Journal of Forest Research 32 (4): 725-741. doi: 10.1139/x02-011

Ohmann J.L., Gregory M.J., Henderson E.B., Roberts H.M. 2011 - Mapping gradients of community composition with nearest‐neighbour imputation: extending plot data for landscape analysis. Journal of Vegetation Science 22 (4): 660-676. doi: 10.1111/j.1654-1103.2010.01244.x

Opsomer J.D., Breidt J., MoisenG.G., Kauermann G. 2007 - Model-assisted estimation of forest resources with Generalized Additive Models. Journal of the American Statistical Association 102 (478): 400-416. doi: 10.1198/016214506000001491

Papritz A., Stein A. 1999 - Spatial prediction by linear kriging. In: “Spatial Statistics for Remote Sensing”. Remote Sensing and Digital Image Processing 1, Stein A., Van der Meer F., Gorte B. Eds. Springer, Dordrecht: 83-113. doi: 10.1007/0-306-47647-9_6

Reese H., Nilsson M., GranqvistPahlén T., Hagner O., Joyce S., Tingelöf U., Egberth M., Olsson H. 2003 - Countrywide Estimates of Forest Variables Using Satellite Data and Field Data from the National Forest Inventory. A Journal of the Human Environment 32(8):542-548. doi: 10.1579/0044-7447-32.8.542

Särndal C.E., Swensson B., Wretman J. 1992 - Model assisted survey sampling. Springer-Verlag, New York. 695 p.

Schabenberger O., Pierce F. 2002 - Contemporary statistical models for the plant and soil sciences. CRC Press, Boca Raton. 760 p.

Schabenberger O., Gotway C.A. 2005 - Statistical methods for spatial data analysis. CRC Press, Boca Raton. 512 p.

Schapire R., Freund Y., Bartlett P., Lee W. 1998 - Boosting the margin: A new explanation for the effectiveness of voting methods. Annals of Statistics 26 (5): 1651-1686. doi: 10.1214/aos/1024691352

Schowengerdt R.A. 2006 - Remote Sensing: Models and Methods for Image Processing3rd ed. Academic Press, Burlington. 560 p.

Shepard D. 1968 - A two-dimensional interpolation function for irregularly-spaced data. Proceedings of the 1968 ACM National Conference, 517–524. doi:10.1145/800186.810616

Song Y., Lu Y. 2015 - Decision tree methods: applications for classification and prediction. Shanghai archives of Psychiatry 27 (2): 130-135. doi: 10.11919/j.issn.1002-0829.215044

Subedi N., Zhang L., Zhen Z. 2018 - Bayesian geographically weighted regression andits application for local modeling of relationships between tree variables. iForest 11: 542-552. doi: 10.3832/ifor2574-011

terBraak C.J.F. 1986 - Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67 (5): 1167-1179. doi: 10.2307/1938672

Tobler W.R. 1970 - A computer movie simulating urban growth in the Detroit region. Economic Geography 46: 234-240.

Thompson S.K. 2002 - Sampling 2nd ed. Wiley, New York. 400 p.

Tomppo E.O. 1991 - Satellite image-based national forest inventory of Finland. International Archives of Photogrammetry and Remote Sensing 28 (7): 419-424.

Torresan C., Corona P., Scrinzi G., VallsMarsal J. 2016 - Using classification trees to predict forest structure types from LiDAR data. Annals of Forest Research 59 (2): 281-298. doi: 10.15287/afr.2016.423

Urban D.L. 2002 - Classification and regression trees. In: “Analysis of ecological communities”. MjMSofware Design, McCune B., Grace J.B. Eds., Gleneden Beach: 222-232.

Viana H., Aranha J., Lopes D., Cohen W.B. 2012 - Estimation of crown biomass of Pinuspinaster stands and shrublandabove-ground biomass using forest inventory data, remotely sensed imagery and spatial prediction models. Ecological Modelling 226: 22-35. doi: 10.1016/j.ecolmodel.2011.11.027

Wackernagel H. 2003 - Multivariate Geostatistics: an introduction with applications 3rd ed. Springer-Verlag, Berlin. 388 p. doi: 10.1007/978-3-662-05294-5

Wang Q., Ni J., Tenhunen J. 2005 - Application of a geographically‐weighted regression analysis to estimate net primary production of Chinese forest ecosystems. Global Ecology and Biogeography 14 (4): 379-393. doi: 10.1111/j.1466-822X.2005.00153.x

Young T.M., Wang Y., Hodges D.G., Guess F.M. 2009 - Decision tree applications for forestry and forest products manufacturers. Proceedings of the Southern forest economics workers annual meeting. University of Georgia Athens.

Zhang L., Shi H. 2004 - Local Modeling of Tree Growth by Geographically Weighted Regression. Forest Science 50(2): 225-244.




Copyright (c) 2018 Rosa Maria Di Biase, Lorenzo Fattorini, Maurizio Marchi

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

All texts reported in and all materials directly downloadable from this page are licensed under a Creative Commons Attribution 4.0 International License.