Review papers

Concept to Practice of Geospatial-Information Tools to Assist Forest Management and Planning under Precision Forestry Framework: a review


Precision forestry is a new direction for better forest management. Precision forestry employs information technology and analytical tools to support economic, environmental and sustainable decision; the use of geospatial information tools enables highly repeatable measurements, actions and processes to manage and harvest forest stands, simultaneously allowing information linkages between production and wood supply chain, including resource managers and environmental community. In this report, we reviewed the most recent advances in the use of geospatial information technologies in forestry, and discussed their potential opportunities and challenges towards forest management and planning in the framework of precision forestry.


Precision agriculture, Information and Communication Technology, Decision Support Systems, site-specific management, forest planning

Full Text:




Alivernini A., Barbati A., Fares S., Corona P. 2016 - Unmasking forest borderlines by an automatic delineation based on airborne laser scanner data. International Journal of Remote Sensing 37 (16): 3568-3583.

Ambrosia V., Wegener S., Zajkowski T., Sullivan D., Buechel S., Enomoto F., Lobitz B., Johan S., Brass J., Hinkley E. 2011 - The Ikhana unmanned airborne system (UAS) western states fire imaging missions: from concept to reality (2006–2010). Geocarto. Int. 26 (2): 85–101.

Ananda J., Herath G. 2009 - A critical review of multi-criteria decision making methods with special reference to forest management and planning. Ecological economics 68 (10): 2535-2548.

Anderson K. and Gaston K.J., 2013 -Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Frontiers in Ecology and the Environment, 11(3):138-146.

Auernhammer H. 2001 - Precision farming: the environmental challenge. Computers and Electronics in Agriculture 32: 31–43.

Barbati A., Chirici G., Corona P., Montaghi A., Travaglini D. 2009 - Area-based assessment of forest standing volume by field measurements and airborne laser scanner data. International Journal of Remote Sensing 30 (19): 5177–5194.

Bayer D., Seifert S., Pretzsch H. 2013 - Structural crown properties of Norway spruce (Piceaabies [L.] Karst.)and European beech (Fagus sylvatica [L.]) in mixed versus pure stands revealed by terrestrial laser scanning. Trees 27: 1035–1047.

Becker G. 2001 - Precision Forestry in central Europe – new perspectives for a classical management concept. In: Proceedings of the First International Precision Forestry Symposium. University of Washington, Seattle, WA., 2001: 17-20.

Béland M., Widlowski J.L., Fournier R.A., Côté J.F., Verstraete M.M. 2011 - Estimating leaf area distribution in savanna trees from terrestrial LIDAR measurements, Agric. For. Meteorol. 151: 1252–1266.

Bonazountas M., Kallidromitou D., Kassomenos P., Passas N. 2007 - A decision support system for managing forest fire casualties. Journal of Environmental Management 84 (4): 412-418.

Bottalico F., Pesola L., Vizzarri M., Antonello L., Barbati A., Chirici G., Corona P., Cullotta S., Garfì V., Giannico V., Lafortezza R. 2016 - Modeling the influence of alternative forest management scenarios on wood production and carbon storage: A case study in the Mediterranean region. Environmental Research 144: 72-87.

Chianucci F., Disperati L., Guzzi D., Bianchini D., Nardino V., Lastri C., Rindinella A. Corona P., 2016 - Estimation of canopy attributes in beech forests using true colour digital images from a small fixed-wing UAV. International Journal of Applied Earth Observation and Geoinformation 47: 60-68.

Cifuentes R., Van der Zande D., Farifteh J., Salas C., Coppin P. 2014 - Effects of voxel size and sampling setup on the estimation of forest canopy gap fraction from terrestrial laser scanning data.Agric. For. Meteorol. 194: 230–240.

Corona P., Chianucci F., Quatrini V., Civitarese V., Clementel F., Costa C., Floris A., Menesatti P., Puletti N., Sperandio G., Verani S., Turco R., Bernardini V., Plutino M., Scrinzi G. 2017 - Precision forestry: riferimenti concettuali, strumenti e prospettive di diffusione in Italia. Forest@ 14: 1-12.

Corona P., Cartisano R., Salvati R., Chirici G., Floris A., Di Martino P., Marchetti M., Scrinzi G., Clementel F., Torresan C. 2012 - Airborne Laser Scanning to support forest resource management under alpine, temperate and Mediterranean environments in Italy. European Journal of Remote Sensing 45: 27-37.

Corona P., Fattorini L., Franceschi S., Chirici G., Maselli F., Secondi L. 2014 - Mapping by spatial predictors exploiting remotely sensed and ground data: A comparative design-based perspective. Remote Sensing of Environment 152: 29-37.

Dyck B. 2003 - Precision Forestry– the path to increased profitability. In: Proceedings of the Second International Precision Forestry Symposium. University of Washington, Seattle, WA, 2003: 3-8.

Fassnacht F.E., Latifi H., Stereńczak K., Modzelewska A., Lefsky M., Waser L.T., Straub C. Ghosh, A. 2016 - Review of studies on tree species classification from remotely sensed data. Remote Sensing of Environment 186: 64-87.

Ferrara C., Barone P.M., Steelman C., Pettinelli E., Endres A.L. 2013- Monitoring shallow soil water content under natural field conditions using the early-time GPR signal technique.Vadose Zone Journal DOI:10.2136/vzj2012.0202.

Ferrara C., Carlucci M., Grigoriadis E., Corona P., Salvati L. 2017- A comprehensive insight into the geography of forest cover in Italy: Exploring the importance of socioeconomic local contexts. Forest Policy and Economics 75: 12-22.

Forsberg M., Frisk M., Ronnqvisty M. 2013 - FlowOpt: a decision support tool for strategic and tactical transportation planning in forestry. International Journal of Forest Engineering 16: 101-114.

Gallo R., Grigolato S., Cavalli R., Mazzetto F. 2013 - GNSS-based operational monitoring devices for forest logging operation chains. Journal of Agricultural Engineering XLIV (S2): 27.

Gebbers R., Adamchuk V.I. 2010 - Precision agriculture and food security. Science 327: 828–831.

Geiger F., Bengtsson J., Berendse F., Weisser W.W., Emmerson M., Morales M.B., Ceryngier P., Liira J., Tscharntke T., Winqvist C., Eggers S. 2010 - Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic and Applied Ecology, 11 (2): 97-105.

Getzin S., Wiegand K., Schöning I. 2012 - Assessing biodiversity in forests using very high-resolution images and unmanned aerial vehicles. Methods Ecol. Evol. 3 (2): 397–404.

Govender M., Chetty K., NaikenV., Bulcock H. 2008 - A comparison of satellite hyperspectral and multispectral remote sensing imagery for improved classification and mapping of vegetation. Water SA 34 (2): 147-154.

Greaves H.E., Vierling L.A., Eitel J.U., Boelman N.T., Magney T.S., Prager C.M., Griffin K.L. 2015 - Estimating aboveground biomass and leaf area of

low-stature Arctic shrubs with terrestrial LIDAR. Remote Sens. Environ. 164: 26–35.

Heinimann H. R., Breschan J. 2012 - Pre-harvest assessment based on LIDAR data. Croatian Journal of Forest Engineering 33 (2): 169-180.

Hinkley E., Zajkowski T. 2011 - USDA forest service-NASA: unmanned aerial systems demonstrations—pushing the leading edge in fire mapping. GeocartoInt 26: 103–111.

Hopkinson C., Lovell J., Chasmer L., Jupp D., Kljun N., van Gorsel E. 2013 - Integrating terrestrial and airborne LIDAR to calibrate a 3D canopy model of effective leaf area index. Remote Sens. Environ. 136: 301–314.

Huang P., Pretzsch H. 2010- Using terrestrial laser scanner for estimating leaf areas

of individual trees in a conifer forest. Trees 24: 609–619.

IBM 2012: InfoSpherSpher. [Online].Available: [2016, April 19]

Iliadis L.S., Spartalis S.I., 2005 - Fundamental fuzzy relation concepts of a DSS for the estimation of natural disasters' risk (The case of a trapezoidal membership function). Mathematical and computer modeling 42 (7): 747-758.

Inoue T., Nagai S., Yamashita S., Fadaei H., Ishii R., Okabe K., Taki H., Honda Y., Koji Kajiwara K., Suzuki R. 2014 - Unmanned Aerial Survey of Fallen Trees in a Deciduous Broadleaved Forest in Eastern Japan. PLOSOne 9 (10): 109881.

IUFRO 2014 - Precision Forestry: The anchor of your value chain. In: First Announcement, Precision Forestry Symposium. Stellenbosch, South Africa.

IUFRO 2015 - Collection of definition or related elements Precision Forestry. SILVAVOC Terminology Project. [Online]. [2016, 18 April]

Joint Research Centre 2014 - Precision agriculture: an opportunity for EU-farmers - potential support with the CAP 2014-2020. Policy Department B, European Union, 56 p.

Kaloudis S., Costopoulou C.I., Lorentzos N.A., Sideridis A.B., Karteris M. 2008 -Design of forest management planning DSS for wildfire risk reduction. Ecological informatics 3 (1): 122-133.

Karlsson J., Ronnquist M., Frisk M. 2007 - RoadOpt: a decision support system for road upgrading in forestry.Scandinavian Journal of forest research 21(S7): 5-15.

Kleijn D., Rundlöf M., Scheper J., Smith H.G., Tscharntke T., 2011 - Does conservation on farmland contribute to halting the biodiversity decline? Trends Ecol. Evol. 26: 474–481.

Kovácsová P. 2016 - Precision Forestry. [Online]. Available: [2016, April 12]

Kovácsová P., Antalová M. 2010 - Precision Forestry– definition and technologies, Pregledničlanci . Reviews 11–12: 603-611.

Krieger G., Papathanassion K.P., Younis M. 2010 - Inferometric synthetic aperture Radar (SAR) mission employing formatting flying. Proceeding of the IEEE 98 (5): 816-843.

Kühmaier M., Stampfer KS. 2010 - Development of a multi-attribute spatial decision support system in selecting timber harvesting systems. Croatian journal of forest engineering 31: 75-88.

Laurin G.V., Puletti N., Hawthorne W., Liesenberg V., Corona P., Papale D., Chen Q., Valentini R. 2016 - Discrimination of tropical forest types, dominant species, and mapping of functional guilds by hyperspectral and simulated multispectral Sentinel-2 data. Remote Sensing of Environment 176: 163–176.

Liang X., Litkey P., Hyyppä J., Kaartinen H., Kukko A., Holopainen M. 2011 -Automatic plot-wise tree location mapping using single-scan terrestrial laser scanning. Photogramm. J. Fin. 22: 37–48.

Lehmann J.R.K., Nieberding F., Prinz T., Knoth C. 2015 - Analysis of Unmanned Aerial System-Based CIR Images in Forestry- A New Perspective to Monitor Pest Infestation Levels. Forests 6: 594-612.

Lisein J., Pierrot-Deseilligny M., Bonnet S., Lejeune P. 2013 - A photogrammetric workflow for the creation of a forest canopy height model from small unmanned aerial system imagery. Forests 4 (4): 922–944.

Martinić I., Hengl T., Jurišić M., Husnjak S. 2001 - Satellite navigation (GPS) – Trends and application. Strojarstvo 43: 49–56.

Moorthy I., Miller J.R., Berni J.A.J., Zarco-Tejada P., Hu B., Chen J. 2011 – Fieldcharacterization of olive (Olea europaea L.) tree crown architecture usingterrestrial laser scanning data. Agric. For. Meteorol. 151: 204–214.

Najafabadi M.M., Villanustre F., Khoshgoftaar T.M., Seliya N., Wald R. Muharemagic, E. 2015 - Deep learning applications and challenges in big data analytics. Journal of Big Data 2: 1-21.

Olofsson K., Holmgren J., Olsson H. 2014 - Tree stem and height measurementsusing Terrestrial Laser Scanning and the RANSAC algorithm. Remote Sens. 6 (5): 4323–4344.

Ormarsson S., Cown D. 2005 - Moisture-related distortion of Timber boards of radiate pine-comparison with Norway spruce. Wood and Fiber Science 37 (3): 424-436.

Ostrowski S., Jozkow G., Toth C., Vander Jagt B. 2014 - Analysis of point cloud generation from UAS images. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2 (1): 45.

Pastorella F., Borges J.G., DeMeo I. 2016 - Usefulness and perceived usefulness of Decision Support Systems (DSSs) in participatory forest planning-the final users’ point of view. iForest-Biogeosciences and Forestry 9: 422-429.

Pueschel P., Newnham G., Rock G., Udelhoven T., Werner W., Hill J. 2013 – The influence of scan mode and circle fitting on tree stem detection-stem diameter and volume extraction from terrestrial laser scans. ISPRS J. Photogramm. Remote Sens. 77: 44–56.

Puliti S., Ørka H.O., Gobakken T., Næsset E. 2015 - Inventory of Small Forest Areas Using an Unmanned Aerial System. Remote Sensing 7: 9632-9654.

Raimondo G., Fabrizio M. 2013 - A Methodology Study for the Application of Precision Forestry Approach in Logging Operation Chains. In: EFITA-WCCA-CIGR Conference “Sustainable Agriculture through ICT Innovation”, Turin, Italy.

Ritland K., Krutovsky K.V., Tsumura Y., Pelgas B., Isabel N., Bousquet J. 2011 -Genetic mapping in conifers. In: Genetics, Genomics and Breeding of Conifers. Science Publishers, an imprint of Edenbridge Ltd. CRC press, 196-238 p.

Sarre A. 2014 - In pursuit of precision. ITTO- International tropical Timber organization. [Online]. [2016, April 25]

Schmoldt D.L., Thomson A.J. 2003 - Precision technologies: data availability past and future. In: Proceedings of the First International Precision Forestry Symposium. University of Washington, Seattle, WA, 2003: 9-15.

Scrinzi G., Clementel F. 2014 - Un sistema software di supporto decisionale per la stima sintetica del parametri dendrometricic di poplamento nella NPFAT. [Online]. Available: [2016, May 25]

Seidel D., Beyer F., Hertel D., Fleck S., Leuschner C. 2011 - 3D-laser scanning-A non-destructive method for studying above-ground biomass and growth of juvenile trees. Agr. Forest Meteorol. 151: 1305–1311.

Seidel D., Fleck S., Leuschner C. 2012 - Analyzing forest canopies with ground-based laser scanning-a comparison with hemispherical photography. Agric. Forest Meteorol. 154: 1–8.

Srinivasan S., Popescu S.C., Eriksson M., Sheridan R.D., Ku N.W. 2014- Multi-temporal terrestrial laser scanning for modeling tree biomass change. For. Ecol. Manage. 318: 304–317.

Srinivasan S., Popescu S.C., Eriksson M., Sheridan R.D., Ku N.W. 2015 – Terrestrial laser scanning as an effective tool to retrieve tree level height, crown width, and stem diameter. Remote Sens. 7 (2): 1877–1896.

Tallis H.T., Ricketts T., Guerry A.D., Wood S.A., Sharp R., Nelson E., Ennaanay D., Wolny S., Olwero N., Vigerstol K., Pennington D., Mendoza G., Aukema J., Foster J., Forrest J., Cameron D., Arkema K., Lonsdorf E., Kennedy C., Verutes G., Kim C.K., Guannel G., Papenfus M., Toft J., Marsik M., Bernhardt J., Griffin R., Glowinski K., Chaumont N., Perelman A., Lacayo M., Mandle L., Griffin R., Hamel P., Chaplin-Kramer R. 2013 - InVEST 2.6.0 User's Guide. The Natural Capital Project, Stanford University, Stanford.

Tang L., Shao G. 2015 - Drone remote sensing for forestry research and practices. Journal of Forestry Research 26 (4): 791-797.

Taylor S.E., Veal M.W., Grift T.E., Mcdonald T.P., Corley F.W. 2002 - Precision Forestry-Operational tactics for today and tomorrow. In: 25th annual Meeting of the council of Forest Engineers. Auburn university, Auburn, Alabama, USA.

Tilman D., Balzer C., Hill J., Befort B.L. 2011 - Global food demand and the sustainable intensification of agriculture. In: Proceedings of the National Academy of Sciences, 13 December 2011, no 108, vol. 50: 20260-20264.

Toth C., Jóźków G. 2016 - Remote sensing platforms and sensors: a survey. ISPRS Journal of Photogrammetry and Remote Sensing 115: 22-36.

Tran D.V., Nguyen N.V. 2006 - The concept and implementation of precision farming and rice integrated crop management systems for sustainable production in the twenty-first century. International Rice Commission Newsletter (FAO) 55: 91-102.

Trumbore S., Brando P., Hartmann H. 2015 - Forest health and global change. Science 349 (6250): 814-818.

Tsui O.W., Coops N.C., Wulder M.A., Marshall P.L. 2013 - Integrating airborne LIDAR and space-borne radar via multivariate kriging to estimate above-ground biomass. Remote Sensing of Environment 139: 340–352.

Tulldahl H.M., Larsson H. 2014 - LIDAR on small UAV for 3D mapping. In: Proceedings of SPIE sponsored conference on electro-optical remote sensing, photonic technologies, and applications VIII; and military applications in hyperspectral imaging and high spatial resolution sensing II. Amsterdam, Netherlands, 2014.

Van Der Zande D., Hoet W., Jonckheere I., Van Aardt J., Coppin P. 2006 - Influence of measurement set-up of ground based for derivation of tree structure. Agric For Meteorol. 141: 147–160.

Van der Zande D., Stuckens J., Verstraeten W.W., Mereu S., Muys B., Coppin P. 2011 - 3D modeling of light interception in heterogeneous forest canopies using ground-based LIDAR data. Int. J. Appl. Earth Obs. Geoinf. 13: 792–800.

Van Leeuwen M., Coops N.C., Hilker T., Wulder M.A., Newnham G.J., Culvenor D.S. 2013 - Automated reconstruction of tree and canopy structure for modelling the internal canopy radiation regime. Remote Sens. Environ. 136: 286–300.

Wallace L., Watson C., Lucieer A. 2014 - Detecting pruning of individual stems using airborne laser scanning data captured from an unmanned aerial vehicle. Int. J. Appl. Earth Obs. Geoinf. 30: 76–85.

Wallace L., Lucieer A., Malenovský Z., Turner D., Petr Vopenka P. 2016 - Assessment of Forest Structure Using Two UAV Techniques: A Comparison of Airborne Laser Scanning and Structure from Motion (SfM) Point Clouds. Forests 7: 62.

Wang X. 2012 - Advanced Sorting Technologies for Optimal Wood Products and Woody Biomass Utilization. In: Proceedings of 2012 International Conference on Biobase Material Science and Engineering (BMSE 2012). Changsha, China. 21-23 October, 2012: 175-179.

Wulder M.A., Franklin S.E. (Eds.). (2012) - Remote sensing of forest environments: concepts and case studies. Springer Science & Business Media, New York.

Wulder M.A., White J.C., Nelson R.F., Næsset E., Ørka H.O., Coops N.C., Hilker T., Bater C.W., Gobakken T. 2012 - LIDAR sampling for large-area forest characterization: a review. Remote Sensing of Environment 121: 196–209.

Yao T., Yang X., Zhao F., Wang Z., Zhang Q., Jupp D., Lovell J., Culvenor D., NewnhamG., Ni-Meister W. 2011 - Measuring forest structure and biomass in New England forest stands using Echidna ground-based LIDAR. Remote Sens.Environ. 115 (11): 2965–2974.

Zarco-Tejada P.J., Diaz-Varela R., Angileri V., Loudjani P. 2014 - Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods. Eur. J. Agron. 55: 89–99.

Zhao F., Strahler A.H., Schaaf C.L., Yao T., Yang X., Wang Z., Schull M.A., Román M.O., Woodcock C.E., Olofsson P. 2012 - Measuring gap fraction, element clumping index and LAI in Sierra Forest stands using a full-waveform ground based LIDAR. Remote Sens. Environ. 125: 73–79.

Zheng G., Moskal L.M., Kim S.H. 2013 - Retrieval of effective leaf area index in

heterogeneous forests with terrestrial laser scanning. IEEE Trans. Geosci.

Remote Sens. 51: 777–786.

Copyright (c) 2017 Most Jannatul Fardusi, Francesco Chianucci, Anna Barbati

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons License

All texts reported in and all materials directly downloadable from this page are licensed under a Creative Commons Attribution 4.0 International License.