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ABSTRACT The ecological and economic relevance of sweet chestnut (Castanea sativa Mill.) has long been related to its wide geograph-
ical distribution and multipurpose products potential. In Central Italy and especially in Latium, sweet chestnut finds optimal environmental
conditions for growth, supported by the application of traditional silvicultural practices. Thus, its distribution has been radically modified and
controlled by man in order to manage it in profitable and diversified ways (e.g., by coppices or orchards) to produce a wide range of eco-
system services, marketable (wood, fruits) and not marketable (landscape, water regulation, etc.) products. Over the years, due to climate
change, some productivity changes have been observed and new challenges are expected to manage and cultivate this species. Based on
this background, this work aims at investigating the possible impacts of climate change on sweet chestnut in Central Italy in medium (2041-
2060) and long term (2081-2100). Adopting a standard protocol for reporting species distribution model (ODMAP - Overview, Data, Model,
Assessment, Prediction), four Earth System Models have been combined into two Shared Socio-economic Paths and two Time Horizons,
to produce potential chestnut bioclimatic suitability maps. The outlined scenarios represent valuable information for future chestnut policy
and management for defining specific strategies, considering the adaptive capacity of the species in terms of resilience from pathogenic

attacks and response to innovative silvicultural treatments.
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Introduction

Forests are critically important for climate, biodiversi-
ty and human well-being, providing a vast amount of in-
ter-related ecosystem services (e.g., carbon sequestration,
recreation, biodiversity conservation, timber production,
soil and natural hazard protection) which can define for-
est multifunctionality (Ammer 2018). Among European
species, sweet chestnut (Castanea sativa Mill., here there-
after, chestnut) is an important species for the inland
forests, and marginal (disadvantaged) areas in Italy, as
well as a valuable food resource, which has accompanied
the evolution of the human population over the centu-
ries (Bounous 2005, Ministry of Agricultural Food and
Forestry Policy 2008, 2010, Angelini et al. 2013). There-
fore, its distribution has been radically modified and
controlled by humans over the years, in order to manage
it in profitable and diversified ways (e.g., by coppices or
orchards) and produce a wide range of easily marketa-
ble (wood, fruits) and not marketable (landscape, water
regulation, etc.) products (Mattioli et al. 2016, Carbone
et al. 2020). Due to the increased worldwide demand for
chestnut nuts in the last decade (FAOSTAT 2022) linked
to their nutritional characteristics (Massantini et al. 2021)
and the increasing interest in chestnut timber, both the
planting of new chestnut stands and the recovery of suit-
able abandoned chestnut areas is advisable (Rossi et al.
2023).

Chestnut tree development and growth is largely in-
fluenced by several pedoclimatic factors, such as physi-
cal-chemical characteristics of the soil, orography, soil

water distribution, and climatic conditions (Freitas et
al. 2022). In Central Italy, chestnut finds optimal growth
conditions, mainly on volcanic soils, and it is subject to
the application of traditional silvicultural practice of cop-
picing. Forest management of chestnut coppices is based
on short rotation (commonly, 14-16 years, with a single
thinning - not always carried out - at half of the rota-
tion age) in monospecific even-aged stands, clearcut on
large areas, release of 30-80 standards per hectare, with
the main purpose to profitably yield valuable wood as-
sortments (poles and beams) (Mattioli et al. 2016). Con-
cerning standards release, Manetti et al. (2022) demon-
strate the uselessness of this practice in chestnut coppices
devoted to quality wood production, except when other
high value tree species are present and may be considered
(Fabbio 2016, Manetti et al. 2016, Manetti et al. 2022) or
when it is necessary to protect against shallow landslides
located along steep slopes: in this case, also Dazio et al.
(2018) suggest simple coppicing (no standards release) as
the most suitable silvicultural system for chestnut.

The potential naturalness of chestnut stands has
been recognized by the European Community Natura
2000 network (EU Council Directive 1992), which has
declared both the chestnut-dominated forests and the
long-established chestnut plantations with semi-natural
undergrowth relevant habitats (9260: Castanea sativa
woods) for biodiversity conservation (EC 2007). In ad-
dition, several studies have shown their high ecological
importance in supporting biodiversity (e.g., Gondard
and Romane 2005, Gondard et al. 2006, Mattioli et al.
2008, Pezzi et al. 2011, Guitian et al. 2012, Zlatanov et al.
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2013, Mattioli et al. 2016, Corona et al. 2017, Manetti et
al. 2017; 2020). Thus, a strong scientific debate persists on
the trade-off between forest management for multifunc-
tionality and biodiversity conservation (Ammer 2018),
especially in recent years, where, due to climate change,
some productivity changes have been observed and new
challenges are expected. Distinctively, various stressors
(both natural and anthropogenic) such as abandonment
of traditional orchards, wildfire, and increased incidence
of pests and diseases, are threatening chestnut stands
(Bellat et al. 2019). Moreover, biodiversity is particularly
affected by climate change in terms of species distribu-
tion, migration, and genetic variability (Borghetti et al.
2012). Accordingly, different scenarios on forest ecosys-
tems were defined from regional (Ruiz-Labourdette et al.
2012, Jantsch et al. 2014, Hansen and Phillips 2015), to na-
tional (Woodall et al. 2010, Garcia-Lopez and Allué 2011,
Garcia et al. 2013, Corda et al. 2014) and supranational
scale (Iverson et al. 2008, Hickler et al. 2012, Meier et al.
2012, Tanaka et al. 2012, Casazza et al. 2014), including
patterns of pests and diseases associated with chestnuts
that may also shift with climate change (Dinis et al. 2011,
Santos et al. 2017, Larue et al. 2021). As suggested by Fra-
ga et al. (2020) and Freitas et al. (2022), where warmer
temperatures accompanied by recurrent and intensified
extreme events, such as severe rainfall events, droughts,
or heatwaves are also expected, production damages in
the upcoming decades will increase.

However, in the debate about tree species suited
to cope with the ongoing global changes, sweet chest-
nut is frequently discussed as a potentially future-proof
tree species for Central Europe (Conedera et al. 2021),
mainly for its current southern distribution range, which
corresponds climatically to what is expected for Central
Europe in the near future. This suggestion is typically
derived from Species Distribution Models (SDMs; Gui-
san and Zimmermann 2000, Elith and Leathwick 2009,
Naimi and Aratjo 2016, Noce et al. 2019) that use spe-
cies occurrence data to infer the environmental envelope
in which a species can potentially persist (Thurm et al.
2018). For chestnut, such static approaches to defining
future ranges are particularly challenging since the ‘chest-
nut civilization” has had a significant impact on both the
present distribution and the structure of species in for-
ests (Conedera et al. 2021). For instance, as Zlatanov et
al. (2013) suggested, SDM:s typically ignore biotic interac-
tions and successional dynamics and thus may not reflect
that in the absence of forest management, chestnut could
become outcompeted by other species.

Based on this background, our study aims to provide
some clues on how climate change may impact the envi-
ronmental suitability of chestnut in Central Italy, as well
as to offer an overview of the possible adaptation meas-
ures (medium and long term) that are currently availa-
ble for chestnut. Latium region was chosen as study area
for the following reasons: (i) high presence of chestnut
stands (Gasparini et al. 2022; ISTAT 2023); (ii) chestnut
can be considered a native species on the volcanic hills of
the region (Krebs et al. 2004, 2019); (iii) many of the pests

and diseases that have affected chestnut trees, even due to
climate changes, are well known and efficiently contained
and mitigated by specific management approaches (Vet-
traino et al. 2005, Spina and Romagnoli 2010); (iv) chest-
nut chain is the most relevant socio-economic regional
forest chain; (v) this location shows a paradigmatic ex-
ample of the potential conflicts between chestnut stands
services (productive and environmental); (vi) chestnut
presence is located in areas rather homogeneous in terms
of vegetation, soils, and climate.

Finally, this paper intends to develop predictions in
the next decades on a local scale and to give more de-
tailed knowledge regarding the species and its suitability
for future, in order to support new policies and manage-
ment options for defining specific strategies, considering
the adaptive capacity of the species in terms of resilience
from pathogenic attacks and response to silvicultural
treatments.

Materials and Methods

Study area

According to the last Italian National Forest Invento-
ry (Gasparini et al. 2022), in Italy chestnut forests cover
an area of about 780,000 ha, mainly (70%) managed as
even-aged coppices for poles, timber production for con-
structing buildings or other structural elements (Carbone
et al. 2020), and the remaining 30% as orchards for fruit
production, growing preferably between 400 and 1,000 m
a.s.l, preferring oceanic climates and areas not subject-
ed to excessive thermal variations. Particularly, on the
pre-Apennine volcanic reliefs of Latium chestnut finds
its environmental optimum (Mattioli et al. 2016, Corona
et al. 2017) rather homogeneous in terms of vegetation
(Doronico-Fagion phytosociological alliance, with ingres-
sion of acidophilic elements of the Quercetalia robori-pe-
traeae phytosociological order), soils (fertile, volcanic,
deep and loose with acid pH, mainly classified as andisols
and identified as “black so0il”) and bioclimate (mesomedi-
terranean sub-humid) (Blasi et al. 2004), covering an area
of about 36,000 ha (Gasparini et al. 2022, ISTAT 2023).

Model approach

We applied a SDMs approach, a set of algorithms for
processing and extrapolating species distributions based
on quantitative or rule-based models (e.g., Guisan and
Zimmermann 2000, Guisan and Thuiller 2005, Elith and
Leathwick 2009) to chestnut stands in Latium. SDMs are
also known as bioclimatic envelope models, correlative
ecological niche models, or habitat suitability models, be-
cause they explore the relationships and the equilibrium
between the geographical distribution of species and a set
of environmental variables (Guisan and Zimmermann
2000, Austin 2002, Peterson et al. 2011).

Here, the Overview/Conceptualization, Data, Model
fitting, Assessment and Prediction (ODMAP) standard
protocol, described in Zurell et al. (2020), was applied.

This is a standard protocol for reporting SDMs to im-
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Table 1 - The Overview section of the ODMAP standard protocol applied.

Subsection

Element

Value

Model objective

Model objective

Forecast and transfer

Target output

Bioclimatic suitability map

Focal taxon

Castanea sativa Mill.

Location

Latium region

Scale of Analysis

Spatial extent

Regional level

Spatial resolution

Planimetric resolution: 0.005 km?

Temporal extent

2041-2060 and 2081-2100

Temporal resolution

2.5 minutes (4.5 km)

Boundary Political
Observation tvoe Forest type map available at “Geoportal of Latium”
Biodiversity data Y Study area coordinates (41°44’ to 41°21” N, 12°40’ to 12°59’ E)
Response data type Presence-only
Predictor types Climatic and topographic
Chestnut stands find optimal growth conditions in Latium region. Will it be the same for
Hvootheses Hvootheses the future? Is it possible to identify the potential impacts of climate change on chestnut
P P stands in Latium? The environmental predictors extracted from the “WorldClim” database
will be sufficient to predict future distribution of the species?
) . Redundancy of environmental predictors. Model’s performance is tested in a limited
Assumptions Model assumptions . . .
space (Latium). No observation bias problems
Algorth Modelling technology ~ Maximum Entropy (Maxent) algorithm
orithms
9 Model complexity The model settings were chosen to yield a simple, smooth response surface
Workflow Model workflow Refer to the flowchart (Fig. 1 and Fig. 2)
Software MaxEnt (Version 3.4.2); Qgis 3.4 Madeira
Software

Data availability

Geoportal of Latium (https://geoportale.regione.lazio.it/geoportale/)
WorldClim (https://www.worldclim.org/data/cmip6/cmip6_clim2.5m.html)

prove their method reproducibility, ensuring transparen-
cy and consistency in their development and application,
which consists of the five basic modelling steps that pro-
vide its name. Each step (section) contains unique infor-
mation that clarify and present the data and the method
applied in this research (Zurell et al. 2020). In Table 1 we
identified and showed eleven obligatory subsections of
Overview section.

The potential distribution of chestnut under the ef-
fect of climate change in the medium and long term has
been simulated using the Maximum Entropy (MaxEnt)
algorithm (ver. 3.4.2). The MaxEnt algorithm (developed
for SDMs) is a machine learning method that iteratively
trains multiple models on presence-only data and bases
its choice on the one that presents the maximum entropy
on the set of calibration data (training). Among the mod-
elling approaches, MaxEnt is widely used because of its
good performance with small sample sizes, compared to
other modelling methods (Philips and Dudik 2008, Baba-
lik et al. 2021). It is a general-purpose method for making
predictions or inferences from incomplete information,
which minimizes the relative entropy between two prob-
ability densities (one estimated from the presence data
and one, from the landscape) defined in covariate space
(Phillips et al. 2006). Moreover, it has a simple and pre-
cise mathematical formulation, designed to accept pres-
ence-only data as input. On the other hand, it has limited
geostatistical functionality, so it is necessary to pre-pro-

cess the data in GIS environment, as well as post-process-
ing the results.

Pre-processing and SDM calibration

The MaxEnt algorithm needs two kinds of input data:
presence-only data (species data), topographic and bio-
climatic predictors (Fig. 1).

Presence-only data is a list made by geo-localized
points with the presence of chestnut in Latium, that has
been extracted from a “Chestnut map” obtained through
Qgis 3.4 Madeira software by selecting chestnut polygons
(a layer with the chestnut surfaces in Latium) within
the forest type map available at “Geoportal of Latium”
(https://geoportale.regione.lazio.it/geoportale/).

With the need to geolocate chestnut stations in Latium
in a format that MaxEnt could use, the “Chestnut map”
was superimposed with an empty 30 arc-seconds regular
grid (about 1 x 1 km) and the cells containing chestnut
surfaces have been selected. The polygons containing
chestnut surfaces within the map were converted into a
layer made by the centroids of the selected cells, and then
it was converted into a geolocalized file of chestnut pres-
ence useful for Maxent (csv file of the chestnut locations).

Nineteen Bioclimatic Predictors (19 BPs) and eleva-
tion data have been extracted from WorldClim (https://
www.worldclim.org/data/cmip6/cmip6_clim2.5m.html),
a database full of high spatial resolution global weather
and climate data that can be used for spatial mapping and
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Figure 1 - Pre-processing flowchart.
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modelling. BPs have been evaluated for the calibration
phase of SDMs (Tab. 2; Fig. 1), at the spatial resolution of
2.5 minutes (about 4.5 km at the equator) in order to de-
velop a model with the current chestnut distribution area
available in the “WorldClim” dataset for the years 1970-
2000 (assumed as actual/historic situation) (https://www.
worldclim.org/data/worldclim21.html).

Table 2 - List of the bioclimatic predictors used for the calibration
phase of SDM.

Predictor ID  Description Unit
Bio1 Mean annual temperature °C*10
Bio2 Mean diurnal range °C*10
Bio3 Isothermality n. a.
Bio4 Temperature seasonality °C*10
Bio5 Max temp. of warmest month °C*10
Bio6 Min temp. of coldest month °C*10
Bio7 Temperature annual range °C*10
Bio8 Mean temp. of wettest quarter °C*10
Bio9 Mean temp. of driest quarter °C*10
Bio10 Mean temp. of warmest quarter °C*10
Bio11 Mean temp. of coldest quarter °C*10
Bio12 Annual precipitation mm
Bio13 Precipitation of wettest month mm
Bio14 Precipitation of driest month mm
Bio15 Precipitation seasonality n. a.
Bio16 Precipitation of wettest quarter mm
Bio17 Precipitation of driest quarter mm
Bio18 Precipitation of warmest quarter mm
Bio19 Precipitation of coldest quarter mm

Therefore, data were extracted with a buffer of around
1.25 minutes (half the resolution of the BPs) within the
study area, in order to also include the chestnut stands
located at the borders of the study area itself.

Simulations accuracy

The accuracy of the simulations executed has been
evaluated with the analysis of ROC curve (“Receiver
Operating Characteristic”) as described by Swets (1988).
ROC curves are used to evaluate the predictive perfor-
mance of a model based on a response variable; in this
case, it has been taken into consideration the only-pres-
ence data of the species (as described in the previous
paragraph) based on the 30 arc-seconds regular grid as-
sumed as actual/historic situation. The area subtended by
the ROC curve, called AUC (“Area Under the Curve”), is
an index of the model quality: the greater the area sub-
tended by the curve, the greater the discriminating power
of the model (Phillips et al. 2006). The range of values that
AUC can take is between 0.5 (minimum accuracy) and
1.0 (maximum accuracy).

To calculate the degree of agreement between the
different simulations we produced two additional maps
(“Degree agreement maps”), discussed in the results,
which show the Relative Standard Deviation (RSD), con-
sidered as the ratio between standard deviation and the
mean of percentage anomalies, for each time horizon
considered.

Future projection
The Coupled Model Intercomparison Project phase 6,
taken in the Sixth Assessment Report (AR6) of the IPCC
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Figure 2 - SDM calibration and Future Projection flowchart.

FUTURE PROJEC]'[OBF;'?'.

climate report 2022 (Kikstra et al. 2022) uses a new gen-
eration of scenarios called the “Shared Socioeconomic
Pathways” (SSPs; see “Parting of the pathways”): these are
five socio-economic and technological trajectories that
world could follow this century by the change of several
factors, such as population, technological and econom-
ic growth, and could lead to significantly different future
emissions and warming outcomes, even without climate
policy. Each trajectory has a baseline in which no climate
policies are enacted after 2010, resulting in between 3°C
and 5°C of warming above pre-industrial levels by 2100.

These five SSPs are processed in “WorldClim” data-
base for nine different ESMs that develop climate fore-
casts to understand climate and predict future climate
change.

Hausfather and Peters (2020) suggest that climate
impact studies using models developed for AR6 should
include scenarios that reflect plausible outcomes, such as
SSP2-4.5, SSP4-6.0 and SSP3-7.0 (defined “possible fu-
tures”) and therefore, clearly outline the climate impacts
for 3°C in addition to those for 5°C.

To predict the future distribution in the medium
and long term according to Kikstra et al. (2022), a ref-
erence was made to the following four (of the nine
above-mentioned) ESMs: CNRM-ESM2-1, CanESM5,
MIROC-ES2L, MRI-ESM2-0, led by two chosen inter-
mediate scenarios that assume as plausible a temperature
increases of 2.5°C (SSP2-4.5) and 4°C (SSP3-7.0) (Fig. 2).

Following the calibration process, and assuming top-
ographic predictors unchanged, we used the same spatial
resolution of 2.5 minutes (about 4.5 km at the equator).
The medium and long term period, used for the transfer
or projection of data, defined as Time Horizons (THs)
are: 2041-2060 and 2081-2100. These two THs have
been chosen among the four time horizons available in
“WorldClim” database (2021-2040; 2041-2060; 2061-
2080 and 2081-2100).

The climatic ensemble approach adopted for future
projections (Fig. 2) assumes that the nineteen used pre-
dictors (19 BPs), adequately developed and defined for
the study area, have been used for four ESMs and two
SSPs, and simulated in the two Time Horizons (THs):
2041-2060 and 2081-2100. For both THs, eight maps
were firstly produced (four ESMs * two SSPs) and then
aggregated in two final maps, showing likely scenarios
of chestnut bioclimatic suitability projected in medium
and long term. Future scenarios are constructed by calcu-
lating the percentage anomaly of ensemble (“Percentage
anomalies maps”) as the difference between the average
“future” values for each TH (2041-2060 and 2081-2100)
compared to the control period (1970-2000).

Simultaneously, MaxEnt returns a table with the per-
centage estimates of the relative contributions of each
BP to the distribution model. Based on these results, the
three most relevant BPs are selected and used to calculate
the anomaly of each of these predictors and to compare
them with the “Percentage anomalies maps” in order to
analyze the future distribution of chestnut bioclimatic
suitability in relation to the BPs most contributive to the
model and produce the final maps.

Results

Output data validity

The ROC curves have been processed and grouped
according to the four ESMs and the two SSPs. All models
used have an AUC > 0.7 (Fig. 3).

The “Degree agreement maps” produced are shown in
Figure 4 and Figure 5.

Figure 4 and Figure 5 show agreement palette rang-
ing from green (low percentage, equal high degree of
agreement) to red (high percentage, equal slow degree of
agreement), showing the percentage values of the Rela-
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Figure 3 - ROC curves of the four ESMs used for the modelling distribution of chestnut, for each of the two THs considered (2041-2060;

2081-2100).
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Figure 4 - Degree agreement maps between the members of the
ensemble for the medium term (2041-2060). The green (low %) to
red (high %) color scale shows the percentage values of the RSD.

Figure 5 - Degree agreement maps between the members of the
ensemble for the long term (2081-2100). The green (low %) to red
(high %) color scale shows the percentage values of the RSD.

Figure 6 - Percentage anomaly map of chestnut bioclimatic
suitability in Latium region in medium term (2041-2060).

Figure 7 - Percentage anomaly map of chestnut bioclimatic
suitability in Latium region in long term (2081-2100).

tive Standard Deviation (RSD). In both cases, RSD values
vary from 0.3% to 55.8%. The lower the percentage value
of the RSD, the greater the agreement among the different
simulations executed.

Figure 4 and Figure 5 show that the agreement among
the different simulations is greater in areas where is pre-
dicted an increase in terms of chestnut bioclimatic suita-
bility, supporting the validity of the projections elaborated.

Transfer and future projections

Percentage anomalies maps at medium and long term
scenarios are shown in Figure 6 and Figure 7.

These maps show areas with positive anomalies in
blue (with a scale varying from 0.0% to 45.1%), which
means an increase in future bioclimatic suitability for
chestnut in Latium, and areas with negative anomalies in
red (with a scale varying from -30.1% to 0.0%) which, on
the contrary, predict a loss of future bioclimatic suitability
for chestnut. Both simulations show an overall increase in
terms of bioclimatic suitability.

Bioclimatic Predictors ranking in the model

Table 3 shows the ensemble mean of the contribution
of each BP in terms of gain of model fitting. This contri-
bution is provided by Maxent algorithm and expressed in
percentage (Tab. 3).

The results show that among BP the highest values
and therefore a higher impact in determining the future
distribution of chestnut in Latium have been found for
the following BPs: BIO19 (Precipitation of the coldest

Table 3 - Values of percentage contribution (%) to MaxEnt modelling
of bioclimatic predictors for each Time Horizon considered (2041-
2060 and 2081-2100) without considering topographic variables.

Predictor Description 2041-2060 2081-2100

(%) (%)

Bio1 Mean annual temperature 0.24 0.06

Bio2 Mean diurnal range 0.10 0.11

Bio3 Isothermality 1.03 1.04

Bio4 Temperature seasonality 1.34 1.54
. Max temperature

Biod of warmest month 0.01 0.03
. Min temperature

Bio6 of coldest month 2.56 243

Bio7 Temperature annual range 0.04 0.20
. Mean temperature

Bio8 of wettest quarter 2.00 1.35
. Mean temperature

Bio9 of driest quarter 0.69 1.04
. Mean temperature

Bio10  of warmest quarter 0.51 0.25
) Mean temperature

Biot1 of coldest quarter 1.33 1.26

Bio12 Annual precipitation 0.08 0.06

Bio13 Precipitation of wettest month 0.03 0.09

Bio14 Precipitation of driest month 0.39 0.28

Bio15 Precipitation seasonality 1.10 1.18

Bio16 Precipitation of wettest quarter ~ 1.36 0.51

Bio17 Precipitation of driest quarter 0.54 0.39
. Precipitation

Bio18 of warmest quarter 0.84 0.80

Bio19 Precipitation of coldest quarter ~ 2.53 3.26
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quarter); BIO6 (Minimum temperature of the coldest
month); BIO8 (Mean temperature of the wettest quarter).
These most relevant BPs have been used to calculate their
anomalies and analyze the variations in the THs under
consideration (Fig. 8, Fig. 9 and Fig. 10).

Figure 8 - Anomaly map of BIO19 (precipitation of coldest quarter)
expressed in percentage.
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Figure 9 - Anomaly map of BIO6 (minimum temperature of coldest
month) expressed in degrees.
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Figure 10 - Anomaly map of BIO8 (mean temperature of wettest
quarter) expressed in degrees.
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Anomaly map for BIO19 (Fig. 8) presents blue palette
where the anomaly is positive, and therefore an increase
in rainfall is expected for the coldest quarter (with anom-
aly values from 0.24% to 5.85%) and red palette (with
anomaly values from -0.56% to -0.24%) in areas where
precipitation is expected to decrease for the coldest quar-
ter. The map shows a positive anomaly (rainfall increase
in the coldest quarter) in almost the entire region, with a
gradient of increase from South to North.

Anomaly map for BIO6 (Fig. 9) shows an increase in
the minimum temperature of the coldest month in the

Northern and innermost areas of the region (see dark
red), compared to coastal areas (see neutral shades) for
both the two THs analyzed. The anomaly values range
from 2.86% to 3.29%.

Anomaly map for BIO8 (Fig. 10) shows a general in-
crease of the mean temperature of the wettest quarter in
the whole region, compared to a little decrease (neutral
shades) only in North-West of the region (i.e. Tuscia).
The anomaly values here range from -0.81% to 4.88%.

Discussion

This study analyzes the potential bioclimatic suitabili-
ty of chestnut under the effect of climate change, simulat-
ing possible scenarios as proposed by Kikstra et al. (2022)
over two distinct Time Horizons (THs): 2041-2060 and
2081-2100.

Results achieved show shifts in the environmental
conditions that may have implications for chestnut for-
est stands cultivation and distribution, with a general
increase of the potential bioclimatic suitability. This in-
crease is more evident on the volcanic reliefs, rather than
in the other areas, especially on the Cimini Mountains,
Colli Albani and Sabatini Mountains, North-West of
the region (i.e. Tuscia), in Latera complex. On the other
hand, around Tolfa Mountains a loss in terms of biocli-
matic suitability of this species is expected.

These predictions, differently from what was suggest-
ed by Bindi and Olesen (2011), Costa et al. (2017), Rah-
man et al. (2019), whose climate models predicted the
expansion of bio-climatically suitable areas for chestnut
stands in Northern and Central Europe and a reduction
due to water shortage and more extreme weather events
in the southern areas of Europe, highlights the peculiar-
ity of the climatic and environmental conditions of the
Latium reliefs where chestnut finds optimal growth con-
ditions, as well as the soil conditions (particularly volcan-
ic soils) (Krebs et al. 2004, 2019). Indeed, precipitation,
temperature and their annual fluctuations are important
factors to regulate chestnut tree growth, so changes in
these factors may also lead to improved optimal climatic
conditions for chestnut growth.

The Anomaly map of BIO6 indicates an increase in
the minimum temperature of the coldest month in the
innermost areas of the region compared to coastal ar-
eas for both the THs considered. Chestnut is a meso-
philic species and the best conditions for its growth are
moderate temperature and humidity (Furones Pérez et
al. 2009, Gomes-Laranjo et al. 2009, Freitas et al. 2022)
so a generalized increase of the temperature parameter
will favor the increase of chestnut bioclimatic suitabil-
ity, particularly in the Northern innermost areas of the
region. Air temperature increases are projected over the
upcoming decades in the main areas of European forests
(Miguez-Soto et al. 2019, Puletti et al. 2019, Freitas et al.
2022), also including Italy (Bo et al. 2020, Pecchi et al.
2020). Higher temperatures induce early phenological
phases, anticipated seasonal growing periods, and usual-
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ly, yield reduction (Santos et al. 2020, Freitas et al. 2022),
so this hypothesis, especially with respect to the reliefs of
Cimini Mountains, Colli Albani area and Sabatini Moun-
tains, is in line with the growth of bioclimatic suitability
highlighted by the simulations.

The anomaly map of the predictor BIO8 shows a lit-
tle increase in the whole region. Chestnut phenology re-
quires warm temperatures during the vegetative season,
which happens quite late with respect to other species:
foliation (April/May), flowering (May/July), and fruits’
ripening (September/November). During the wettest
quarter (October/December) a fair increase in the mean
temperature throughout the region favors fruit ripening,
explaining the increase in bioclimatic suitability.

The anomaly map of BIO19 shows a positive value
in the whole region and therefore a general increase in
terms of rainfall in the coldest quarter of the year. This
means a potential water reserve that would allow the spe-
cies to enter the phase of vegetative activity in conditions
of suitable water availability and to avoid stress damage.
Mathbout et al. (2018) suggest that winter precipitation
favors soil water retention promoting the beginning of
fruit setting for chestnut stands. Considering the high
sensitivity to summer droughts (Conedera et al. 2009)
and the problems of water stress that chestnut coppices
show where they grow below 500 m a.s.l., also on the vol-
canic hills of Latium, the altitude plays a decisive role for
the future bioclimatic suitability of this species, and at the
same time, this is a limiting factor given the low maxi-
mum altitude of those reliefs. Moreover, the contribution
of altitude as a topographic variable that can modify bio-
climatic suitability was not considered because the spatial
resolution of data does not allow this predictor to work
properly. Consequently, it is not possible to estimate the
altitudinal shifts of the species.

In addition, the question of whether or how to deal
with collinearity in SDMs, which according to Dormann
et al. (2013) is still much debated and unresolved, is con-
sidered an element of uncertainty, because all BPs deal
with temperature and precipitation. To overcome this
critical issue a climatic ensemble with different ESMs and
SSPs has been adopted, and all of them have shown good
accuracy in predictions (AUC > 0.7) demonstrating the
relevance of this study.

Another criticism of the used approach is that several
Authors consider the use of only-presence data a funda-
mental limitation (e.g. Ward et al. 2009, Noce et al. 2017).
Moreover, it should be noted that environmental predic-
tors show a redundancy appearing related (or collinear)
as they come from the same variables (temperature or
precipitation) operated at different scales (year, season,
month), or even combined.

In brief, using this approach it is important to take into
account: (i) reliability and accuracy of species only-pres-
ence data; (7i) significance of selected environmental vari-
ables; (iii) related data quality, and (iv) parametrization or
configuration of the applied model (Thuiller 2003, Thu-
iller et al. 2009, Nenzén and Aradjo 2011, Chakraborty
et al. 2016); because all the above elements can cause a

large variance in the predictions (Thuiller et al. 2004,
Pearson et al. 2006, Cheaib et al. 2012). Given the po-
tential future increase in chestnut habitat suitability in
Latium region, it is possible to suggest implementing the
presence of the species in areas where it will be suitable
by increasing managed chestnut populations through
the planting of young trees, or by encouraging the res-
toration of abandoned chestnut stands. Therefore, it is
reasonable to set up the management of coppice stands
grown in the best site conditions with long rotation ages
(up to 50-70 years), at least above 500 m a.s.l. and, like-
wise, not to exceed the minimum number of standards
releases required by regional forestry regulation in order
to yield high quality wood assortments. For the restora-
tion of abandoned chestnut stands, it will be necessary to
work with appropriate forest management (e.g., coppic-
ing without standards release) to promote the growth and
survival of chestnut even in post-cultural succession situ-
ations. In fact, chestnut shows low competitiveness when
subjected to postcultural succession in abandoned stands
(Pezzi et al. 2011, Zlatanov et al. 2013, Mattioli et al. 2016,
Manetti et al. 2020).

Conclusions

Forest assessment is rapidly evolving as new tech-
niques and tools become available. However, the ex-
ploitation of the latter, as well as their implementation
within operative management processes, should be ev-
idence-based (Corona 2018). Under this perspective,
this research aims to analyze potential future scenarios
concerning chestnut bioclimatic suitability in the Latium
region, under the impact of climate change. According to
achieved results it can be stated that: (i) in Latium, for
both THs considered (2041-2060 and 2081-2100) sweet
chestnut stands will find optimal growth conditions in
the future, especially in the Northern area of the region,
thanks both to an increase of rainfall in the coldest quar-
ter of the year and of the minimum temperatures of the
coldest months; (7i) the climate ensemble approach used
in this study shows a good accuracy (AUC > 0.7) and has
allowed to provide useful information on the present and
future suitability of chestnut stands within the Latium
region; (iii) the predictors extracted from “WorldClim”
allowed to identify some fundamental predictors of
chestnut growth and development and therefore results
to be useful in order to simulate possible climatic future
scenarios in other regions; (iv) MaxEnt algorithm, cou-
pled with a standard ODMAP protocol, confirms to be
efficient to simulate potential bioclimatic suitability of
species and their eventual shifts under climate change,
as well as to outline suitable adaptation strategies, which
are essential for decision-makers in the forest sector;
(v) an increase of the bioclimatic suitability of the chest-
nut stands will allow to plan new policies and manage-
ment options for this species, considering its adaptive
capacity in terms of resilience from pathogenic attacks
and response to silvicultural treatments that could lead
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to new yield and quality models under future climate
changes (Corona 2014; 2019).

On the other hand, to achieve a full picture of the
future bioclimatic suitability for chestnut (but it will be
the same for each forest species) other factors must be
included within the projection models such as soil type,
pathogenic attack and forest fires.
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