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ABSTRACT  In the Mediterranean region, notwithstanding the high human pressure, fire activity is essentially drought-driven, such 
that fuel moisture represents the main determinant for sustaining fire ignition and spread. Seasonal variations in remotely sensed 
vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), proved to be indicative of variations in fuel amount 
and moisture content and associated fire risk. This study aims to propose a general method to represent the combined pattern of 
remotely sensed vegetation indices and fire ignitions throughout the year, as potential tool to classify terrestrial ecosystems at local 
to global scale. To jointly visualize the temporal dynamics of remotely sensed vegetation indices and annual fire density, we propose 
to log-transform the ‘annual fire density’ (AFD) values, thus expressing the temporal dynamics of fire ignitions in orders of magnitude 
and producing a pyrophenological diagram in which both quantities vary approximately in the same range. The methodological 
approach proposed in this study proved to be independent of the local characteristics and applicable with any available remotely 
sensed vegetation index. The combined NDVI-fire diagrams may contribute to the global pyrophenological classification and map-
ping of terrestrial ecosystems based on the integrated monitoring of remotely sensed vegetation phenology and fuel seasonality.
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Introduction
Fire activity and distribution is determined by the in-

teractions of three main environmental constrains: natural 
and anthropogenic ignitions sources, fuel characteristics, 
and climate-weather conditions that favor combustion 
(Moritz et al. 2005, Archibald et al. 2013, Bradstock 2010, 
Flannigan et al. 2016, Ruffault and Mouillot 2017, Clarke 
et al. 2020). The influence on fire of such constrains vary 
across ecosystems and climate types, resulting in significant 
global to local scale heterogeneity in fire regimes (Chuvieco 
et al. 2008, Le Page et al. 2010, Giglio et al. 2013, Pausas and 
Ribeiro 2013, Benali et al. 2017, Clarke et al. 2020).

Seasonality is a major element of fire regimes. It is usu-
ally accepted that the annual fire cycle is described by the 
alternation of a fire-free and a fire-active season, which is 
controlled by favorable weather conditions, fuel moisture 
and the availability of ignition energy (Benali et al. 2017). 
However, humans also influence fire seasonality, typically 
by igniting fires in suboptimal fire weather conditions (Le 
Page et al. 2010, Benali et al. 2017).

In the Mediterranean region, this complexity is one of 
the major sources of uncertainty for the understanding of 
actual and future fire scenarios (Martìnez et al. 2009, Morei-
ra et al. 2011, Ruffault and Mouillot 2017). Climate affects 
fire occurrence both indirectly through its long-term effects 
on vegetation (i.e., fuel) distribution, and directly through 
the short-term effects of weather conditions on fire regimes 
(Bradstock 2010, Ruffault and Mouillot 2017). In regions 
with marked climate seasonality, like the Mediterranean, al-
though the fire-weather relationships are largely shaped by 
human practices (Marlon et al. 2008, Ruffault and Mouillot 

2015), fire activity is essentially drought-driven, such that 
fuel moisture represents the main determinant for sustain-
ing fire ignition and spread (Wotton et al. 2010, Flannigan 
et al. 2016). Therefore, fires are most likely to ignite and 
spread when vegetation drought and meteorological fire-
prone conditions co-occur (Ruffault and Mouillot 2017). 

Understanding the effects of human pressure and vege-
tation conditions on fire occurrence is thus critical especial-
ly under climate change, which can alter the seasonal pat-
terns of fuel moisture and hence the length and severity of 
the fire season (e.g., Flannigan et al. 2009, Westerling 2016, 
Vega-Nieva et al. 2018). Seasonal variations in remotely 
sensed vegetation indices (VIs), such as the Normalized 
Difference Vegetation Index (NDVI) proved to be indica-
tive of variations in vegetation productivity and moisture 
content (Wang et al. 2003). Therefore, the use of temporal 
NDVI patterns has been proposed by many authors to as-
sess vegetation fire-proneness as they represent the main 
proxy for potential fuel load and flammability (Lasaponara 
2005, De Angelis et al. 2012, Fares et al. 2017, Bajocco et 
al. 2017). For example, Manzo-Delgado et al. (2004, 2009) 
proved the potential of NDVI time-series as indicators of 
fuel drought and associated fire risk in Central Mexico, 
while Bajocco et al. (2017) related the spatial and tempo-
ral distribution of wildfires hotspots in Sardinia (Italy) to 
NDVI temporal profiles. Vega-Nieva et al. (2019) showed 
that the relationships between temporal trends in a satellite 
fuel greenness index and fire density change across regions 
and vegetation types. A detailed understanding of the rela-
tionship between fire occurrence and the remotely sensed 
seasonal conditions of fuels in different regions is thus nec-
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essary to identify patterns of fire occurrence, support fire 
management strategies and foresee future trajectories of fire 
regimes.

In climatic studies, combined patterns of precipitation 
and temperature have been often analyzed by means of 
graphs or diagrams. A common way to describe the climatic 
conditions of a given location in a graphical way is to use so-
called Walter and Lieth diagrams (Walter and Lieth 1967). 
On Walter-Lieth diagrams, average monthly precipitation 
(P) and mean temperature (T) are plotted for each month 
of the year while scaling the data in such a way that 10°C 
on the temperature scale always correspond to 20 mm of 
rain on the precipitation scale. Climate diagrams are thus a 
graphical representation of mean annual climatic regimes. 
Originally aimed at visualizing the dynamics of those cli-
matic variables that are particularly relevant for the vege-
tation distribution, these diagrams represent the starting 
point for a global climatic classification of terrestrial ecosys-
tems (e.g. Walter and Lieth 1967, Walter and Box 1976).

Similar to Walter-Lieth diagrams, in this study we pro-
pose a general method to represent the combined pattern 
of remotely sensed vegetation indices and fire ignitions 
throughout the year. A preliminary assessment of the pro-
posed method was performed by analyzing the mean annu-
al profiles of NDVI and fire ignitions for two fire hotspots 
with distinct fire regimes in two Mediterranean regions of 
Italy: Sardinia and Latium.

Methods
The number of fires and the burned area are processes 

driven by different factors and should be analyzed separate-
ly (Lloret et al. 2002, Bajocco et al. 2008): while the amount 
of fuel mainly drives fire ignition (Moreira et al. 2001), fuel 
spatial distribution mainly explains propagation, because the 
discontinuity of fuel load produces changes in fire-propaga-
tion rates (Cumming 2001). We focused our work on the ND-
VI-based fuel load as ignition energy, so we considered only 
the number of fires; yet the procedure could be adapted and 
extended to fire size.

Notwithstanding the existence of several ad hoc mois-
ture content indices, we decided to use NDVI for monitor-
ing drought stress mainly because: (i) RED and NIR are very 
common spectral bands, contrary to other ones like SWIR; (ii) 
the spatial resolution of RED and NIR is usually higher with 
respect to other bands like SWIR; (iii) NDVI is a ready-to-use 
product of several satellites, like MODIS or Sentinel-2, com-
puted, corrected and validated, contrary to other indices like 
NDWI, for instance; (iv) many works demonstrated the effec-
tiveness of using NDVI as proxy for vegetation responses to 
drought-related stress (Dutta et al. 2013, Benedict et al. 2021, 
Gaikwad et al. 2022, Zhan et al. 2022).

The main challenge in combining the annual profiles of 
the number of fire ignitions and remotely sensed vegetation 
indices is that, unlike the vegetation indices like NDVI, which 

are usually bounded between -1 and 1, the number of fires is a 
cumulative variable that increases with the observed area and 
the sampled time interval. This makes it impossible to com-
pare fire ignition profiles sampled in regions of different size 
or with different time intervals without an appropriate data 
normalization.

For a given study area, we thus need to refer the number 
of fire ignitions observed in a given time period to a fixed unit 
area and temporal interval. For the purposes of our study, this 
is best obtained with the ‘annual fire density’ (AFD) by stand-
ardizing the observed number of fires to an areal unit of 10 
square kilometers and to a temporal interval of one year. The 
AFD is calculated as follows: 1. First, we calculate the num-
ber of fires per unit area in each 16-day interval (the same 
interval of the NDVI observations). 2. Next, we express the 
AFD in a given interval as the number of fires per unit area 
that we would observe in one year if these events would oc-
cur throughout the year with the same constant rate observed 
in that interval. This is tantamount saying that the number of 
fires per unit area in each 16-day interval is multiplied by a 
constant coefficient of 23 for all 16-day intervals. The reason 
for this operation is twofold: first, in this way we rescale the ob-
served fire density over one year of observations, rather than 
to an a-priori defined 16-day interval. This enables to express 
AFD always using the same measurement unit independent-
ly of the duration of the time intervals using for constructing 
the annual NDVI profiles. Second, by changing the order of 
magnitude of the measurement unit of the AFD, we render 
it commensurable after log-transformation with the range of 
the NDVI values [0, 1] and hence to plot them together on the 
same graph. The resulting ‘annual fire density’ (AFD = num-
ber of fires/10 km2 yr.) represents the number of fires per unit 
area that we would observe in one year if these events would 
occur throughout the year with the same constant rate. For 
example, if in the first decade of August we observe in a giv-
en region 0.2 fires /10 km2, assuming a constant rate of events 
throughout the year, this would correspond to an annual fire 
density of 0.2 x 36.5 = 7.3 fires/10 km2 yr.

Also, while in vegetated areas NDVI and other normal-
ized difference indices range approximately from 0.2 to 1.0, 
the annual fire density may range over more than two orders 
of magnitude. Therefore, to jointly visualize the temporal dy-
namics of remotely sensed vegetation indices and annual fire 
density, we propose to log-transform the AFD values, thus ex-
pressing the temporal dynamics of fire ignitions in orders of 
magnitude.

This operation produces a diagram (hereafter PyroPh-
enological diagram) in which both quantities, log AFD and 
the vegetation index, vary approximately in the same range, 
thus allowing their combined visualization in graphical way. 
The ability of the proposed diagrams for highlighting relevant 
aspects of the relationship between remotely sensed fuel load 
and fire seasonality is illustrated with actual examples on the 
fire regimes of two fire hotspots, i.e., areas with the highest 
number of fires, in Sardinia and Latium (Italy).
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Worked example

Sardinia
The island of Sardinia (Fig. 1) covers roughly 24,100 

km² and has a typical Mediterranean climate character-
ized by dry hot summers and a significant water deficit 
from May to September. Annual precipitations range 
from less than 500 mm along the coast to 1,200 mm on 
the mountains in the inner part of the island. The highest 
elevation is 1,834 m a.s.l. The mean annual temperature 
follows the same altitudinal gradient and ranges from 13 
to 18°C.

Land use along the coast and in the main plains is 
dominated by agriculture that covers about 45% of the 
island. In the interior areas, forest stands combined with 
pastures and shrublands prevail. The principal forest types 
include Quercus ilex L. and Quercus suber L. forests. At 
higher elevations the sclerophyllous oak forests merge 
with broadleaved forests of Quercus pubescens Willd. and 
Castanea sativa Mill.

Previous work of Bajocco et al. (2015, 2017) has shown 
that remotely sensed vegetation phenology represents a 
significant driver of fuel load and flammability. Accord-
ingly, NDVI images can be effectively used to identify ho-
mogeneous landscape units with distinctive pyrological 
behavior. To relate fire occurrence with fuel seasonality we 
used the phenological map of Sardinia produced by Ba-
jocco et al. (2015). In this map, Sardinia is classified into 
phenologically homogeneous units that were obtained by 
segmenting the mean annual NDVI profiles of each pixel 
over the 2000-2012 period (https://doi.org/10.6084/m9.
figshare.20980027.v1; Bajocco et al. 2015).

Fire data from 2000 to 2015 were obtained from the 
regional Forest Service of Sardinia (https://www.sardeg-
naambiente.it/corpoforestale). For each fire record, the 
database provides information on the date of ignition, the 
coordinates of the ignition point, and a field estimate of 
fire size. For the phenological unit with the highest fire 
occurrence (i.e., hotspot), we constructed a pyropheno-
logical diagram using the 16-day MODIS 250m NDVI 
images (MOD13Q1, https://lpdaac.usgs.gov/products/
mod13q1v006/) over the period 2000-2015, together with 
the fire ignition points that occurred in the same period 
of time. 

First, for each pixel of the hotspots, we generated a 
mean annual NDVI profile by averaging the NDVI values 
of each 16-day image from 2000 to 2015. Next, we derived 
a mean annual NDVI profile for the selected phenological 
unit by averaging all pixel values belonging to that unit 
for each 16-day NDVI image. Finally, we constructed the 
seasonal fire profile of the selected phenological unit by 
calculating the mean annual fire density (AFD) over the 
period 2000-2015 for the same time intervals of the 16-
day NDVI images.

Latium
Latium is a region of 17,200 km² located on the Tyrrhe-

nian coast of central Italy (Fig. 1). The region has an elon-

gated shape in the NW-SE direction and is characterized 
by a prevalently mountainous-hilly topography and high 
heterogeneity in geological and morphological features. 
The coastal area is characterized by a Mediterranean cli-
mate. The inner areas, up to 2,458 m a.s.l., have more 
temperate climatic features with cooler and more humid 
weather conditions. Average annual rainfall ranges from 
less than 600 mm along the coast to 1,600 mm in the inner 
mountainous regions. Mean annual temperature ranges 
from 5 to 17°C. Vegetation along the coast is dominated 
by sclerophyllous shrubs and Quercus ilex forests. At high-
er elevations the vegetation ranges from mixed forests of 
deciduous oaks to Fagus sylvatica L. forests and grasslands.

Information on the coarse-scale vegetation phenology 
of Latium was obtained from the 16-day MODIS 250m 
NDVI images (MOD13Q1) over the period 2004-2015. We 
first generated a mean annual NDVI profile for each pixel 
of Latium by averaging the NDVI values of each 16-day 
image from 2004 to 2015. By means of an object-orient-
ed classification, the resulting 16-day mean NDVI images 
were used for segmenting the territory of Latium into phe-
nologically homogeneous landscape units showing similar 
temporal patterns in the NDVI values of the constituting 
pixels (https://doi.org/10.6084/m9.figshare.20980756.v1; 
Bajocco et al. 2020) . Using a fire database of Latium over 
the same 2004-2015 period provided by the National Forest 
Service, we identified the main fire hotspot in the southern 
coastal part of the region and we derived its seasonal fire 
profile by calculating the mean annual fire density (AFD) 
over the period 2004-2015 for the same time intervals of 
the 16-day NDVI images and we next constructed the cor-
respondent pyrophenological diagram.

Results
The pyrophenological diagrams of the fire hotspots 

in Sardinia and Latium are shown in Figure 2. The fire 
hotspot of Sardinia covers an area of 3,060 km². Land 
cover in this area is prevalently agricultural with scat-
tered remnants of sclerophyllous shrublands and forests. 

Figure 1 - Study area.
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Climate is typically Mediterranean with pronounced 
summer drought.

Over the period 2000-2015, this area experienced 
an average of 1,057 fires per year, which corresponds to 
a mean AFD of 3.45 fires/10 km2 yr. The mean annual 
NDVI profile shows a U-shaped pattern with a peak of 
vegetation activity in spring and a marked decrease dur-
ing the summer dry period. The unimodal pattern of fire 
occurrences is inverse of that of NDVI, showing a clear 
direct connection between remotely sensed vegetation 
condition and fire seasonality (see Bajocco et al. 2017). 
The highest fire occurrence corresponds to the lowest 
NDVI values. Wildfires are mainly concentrated during 
the summer months, from May to October, with a peak 
of ignitions in June-July, while relatively low activity was 
observed from late fall to early spring.

The fire hotspot of Latium covers an area of 926 km². 
Land cover is composed of a mosaic of extensive agri-
culture, olive groves, pastures and forests. Climate is 
Mediterranean, although with less pronounced summer 
drought than in Sardinia. 

Over the period 2004-2015, this area was subjected 
to an average of 170 fires per year, which corresponds 
to a mean AFD of 1.83 fires/10 km2 yr. The resulting py-
rophenological diagram shows a bimodal fire pattern in 
log-AFD space with a primary peak in summer and a 
secondary peak in late winter-early spring. These peaks 
are separated by a period of low fire occurrence from late 
April to early June that corresponds to the highest annu-
al NDVI values.

Discussion
Understanding the complex interactions of climate, 

fuel conditions and anthropogenic activities in shaping 
fire regimes is a major concern to reliable fire management 
strategies, especially under increased global warming, 
which in some regions may lead to increasing drought 
conditions, and consequently to increasing fire frequency 
and severity (Flannigan et al. 2009, Woolford et al. 2014).

Accordingly, several studies analyzed the effects of cli-
mate and fuel conditions on fire regimes for specific sites 
and regions (e.g., Díaz-Avalos et al. 2001, Botequim et al. 
2013, Oliveira et al. 2013, Ager et al. 2014, Vega-Nieva et 
al. 2019). However, none of them proved to be capable of 
providing a general model to cover the broad variability 
of environmental conditions of the Earth surface. This led 
Platt et al. (2015) to suggest that the most appropriate fire-
weather models are likely to be local, or at most regional 
in scale.

In good agreement with Platt et al. (2015), our pre-
liminary results highlighted a direct, though highly local 
and non-linear relationship between the annual patterns 
of NDVI and fire occurrence. This is not surprising, as 
NDVI is generally considered a complex non-linear in-
dicator of the amount of remotely sensed vegetation, its 
moisture content and related flammability, and its local 
management practices, together with the associated risk 
of fire occurrence (Lozano et al. 2008, Chuvieco et al. 
2010, Yebra et al. 2013, Bajocco et al. 2017).

For example, ‘human-engineered’ fire regimes are ge-
nerally assumed to be characterized by two distinct fire 
seasons per year with at least one of these seasons occur-
ring under suboptimal fire weather conditions (Benali et 

Figure 2 - Location of the fire hot spots of Sardinia and Latium with the corresponding pyrophenological diagrams. The 16-day intervals 
used for constructing the diagrams are: 1–16 Jan (1), 17 Jan–1 Feb (2), 2–17 Feb (3), 18 Feb–5 Mar (4), 6–21 Mar (5), 22 Mar–6 Apr (6), 
7–22 Apr (7), 23 Apr–8 May (8), 9–24 May (9), 25 May–9 June (10), 10–25 Jun (11), 26 Jun–11 Jul (12), 12–27 Jul (13), 28 Jul–12 Aug 
(14), 13–28 Aug (15), 29 Aug–13 Sept (16), 14–29 Sept (17), 30 Sept–15 Oct (18), 16 Oct–31 Oct (19), 1–16 Nov (20), 17 Nov–2 Dec 
(21), 3–18 Dec (22), 19–31 Dec (23).
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al. 2017). Therefore, the bimodal fire seasonality obser-
ved in Latium can be considered the fingerprint of strong 
anthropogenic influence on fire regimes. Note however 
that, while from a climatic viewpoint late winter-early 
spring is only a suboptimal period for fire occurrence, this 
secondary fire peak is associated to the lowest NDVI va-
lues throughout the year. Hence, at least in terms of fuels, 
the observed winter peak is not completely decoupled 
from remotely sensed vegetation conditions that promote 
fire occurrence. Therefore, it might be hypothesized that 
to get a fire season under sub-optimal fire weather, favo-
rable fuel conditions and intense fire-promoting activities 
(such as burning agro-forestry, or the use of fire for pastu-
re renewal) are needed to compensate for the unfavorable 
climate. Note also that the logarithmic scale used to repre-
sent annual fire density in Latium allowed us to highlight 
a marked (NDVI-driven) biseasonal trend in fire occur-
rence which would have been much less evident using a 
linear scale.

More generally, although the relationship between 
NDVI and fire occurrence is highly context-dependent, 
the methodological approach proposed in this study does 
not depend on the local characteristics of the study area 
and can be applied with any available remotely sensed 
vegetation index. Therefore, it may provide valuable in-
formation on the seasonal patterns of fire occurrence and 
their relationships with remotely sensed fuel phenology in 
any type of vegetation and climatic region based on avai-
lable fire records and remotely sensed data.

Conclusions
With this work, we are proposing a descriptive empi-

rical approach that can be replicated with everyone’s own 
data, sensu Bagnouls-Gaussen diagram (1957). As this lat-
ter diagram can represent a useful method to highlight the 
climatic limitations that may negatively influence the ap-
plied agricultural techniques in a given site, our NDVI-fire 
diagram may represent a tool to identify the fuel amount 
conditions that favor or limit the wildfire occurrence. Due 
to their general applicability, these combined NDVI-fire 
diagrams may thus contribute to the global pyrophenolo-
gical classification and mapping of terrestrial ecosystems 
based on the integrated monitoring of remotely sensed ve-
getation phenology and fuel seasonality. At the same time, 
they may represent a reference point for exporting local 
fire-weather models in other regions with similar vege-
tation types, phenology and management practices, thus 
contributing to an integrated knowledge of fire seasonality 
and its most relevant drivers. It should be considered that, 
at moderate-to-coarse scale, as in our case, the climatic 
drivers weigh more than the land use management, while, 
at finer scale, the landscape structure, in terms of land use/
land cover, should be taken into account. Specific additio-
nal experimental designs could be investigated in future 
research studies to evaluate tool sensitivity to different 
geographic areas (e.g., in terms of heterogeneity) and to 
assess inter-annual variability.
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Baeza J., Rodríguez F., Molina J.R., Herrera M.A., Zamora R. 
2010 - Development of a framework for fire risk assessment 
using remote sensing and geographic information system 
technologies. Ecological Modelling 221: 46–58.

Chuvieco E., Giglio L., Justice C. 2008 - Global characterization 
of fire activity: toward defining fire regimes from Earth 
observation data. Global Change Biology 14: 1488–1502.

Clarke H., Penman T., Boer M., Cary G.J., Fontaine J.B., Price O., 
Bradstock R. 2020 - The Proximal Drivers of Large Fires: A 
Pyrogeographic Study. Frontiers in Earth Science 8: 90. doi: 
10.3389/feart.2020.00090

Cumming S.G. 2001 - Forest type and wildfire in the Alberta boreal 
mixedwood: what do fires burn? Ecological Applications 11: 
97–110.

De Angelis A., Bajocco S., Ricotta C. 2012 - Phenological 
variability drives the distribution of wildfires in Sardinia. 
Landscape Ecology 27: 1535–1545.
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