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ABSTRACT  230 temporary plots located in Aleppo pine (Pinus halepensis Mill.) stands in the Aures (Algeria) were used for modeling 
its structure with three theoretical distributions, i.e., the Weibull; the normal and the Beta one. Parameters of the Weibull distribution 
were estimated using two methods: the maximum likelihood and the method of moments. Diameter distribution models were obtained 
by estimation of each distribution parameters and by their prediction using stand variables. Results revealed the efficiency of the 
Weibull distribution estimated with the method of moments. The parameter estimation method is more accurate compared to para-
meter recovery method despite the existence of strong correlations between parameters of the theoretical distributions and some 
population variables such as arithmetic or quadratic mean diameter and dominant height. Plot characteristics revealed the existence 
of several distribution shapes: symmetrical; dissymmetrical with left asymmetry and reverse I or J-shaped distributions.
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Introduction

Aleppo pine (Pinus halepensis Mill.) has a cir-
cum-mediterranean range extending mainly from 
Greece to the Maghreb (Nahal 1962). In Algeria, it 
represents the first forest species in terms of area 
with 881,000 ha corresponding to 21% of the prin-
cipal forest types (Djema and Messaoudène 2009). 
The species is found in the majority of Mediterra-
nean bioclimatic variants of Algeria and compos-
es important forests with appreciable ecological 
values even in the most hostile areas at the limit of 
the Sahara (Quézel 1986). It is found both in coastal 
and inland areas. Its plasticity has been reported for 
various aspects including warming-induced drought 
stress (Choury et al. 2017 and references therein).

In the Aures region, which is a part of the Sa-
haran Atlas mountains, Aleppo pine forest stands 
of Beni-Imloul produce an annual volume of 40,000 
m3 and those of Ouled-Yakoub and Beni-Oudja-
na, whose combined area amounts to more than 
40,000 hectares, may potentially produce more than 
8,500 m3 annually (BNEF 1984). The productivity of 
Ouled-Yakoub Aleppo pine forest, at an age of 70 
years, averages 2 m3 ha-1 year-1 (range: 0.5 to 4.8 m3 
ha-1 year-1). The maximum productivity is reached 
around 50 years. The target diameter for timber 
production is generally greater than 35 cm and such 

diameters are obtained between 70 and 90 years of 
age depending on site fertility. The standing timber 
volume before the final harvest usually ranges from 
153 to 172 m3 ha-1. For a site of a medium fertility, a 
diameter of 35 cm corresponds to an exploitability 
age of 70 years (Bentouati and Bariteau 2005). 

Recent studies indicate the potential role for the 
species as a source of bioresources such as bark 
tannins-based adhesives (Saad et al. 2014); herbi-
cidal properties of leaf, stem and cone essential 
oils (Amri et al. 2013); seed-based nutrient additives 
in food industry (Kadri et al. 2015) and timber bio-
based materials for building (Liman et al. 2016). 
These examples indicate that besides solid wood, 
harvest residues (branches, leaves and cones) 
could also be valued for various uses unless other-
wise recommended by conservation considerations 
such as conservation of biotic assemblages (e.g. 
Dahlberg et al. 2011).

A sustainable timber production should rely 
on sound silvicultural and management practic-
es of Aleppo pine forests. Few studies (Bentouati 
2005, Bentouati and Bariteau 2005) have been de-
voted to silviculture of Aleppo pine in the Aures 
region. These preliminary studies mainly con-
cerned productivity. They proposed a silvicultur-
al model based on the actual state of the stands.  
Another, more dynamic silvicultural model, based 
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on the management of competition between trees, is 
being prepared (work not yet published). A sustain-
able management requires knowledge on stem dis-
tribution by category of size and, more importantly, 
establishing a model which could be used in yield 
tables (Vanclay 1994). A frequency distribution of 
stems by category of size is of great importance in 
forest management because it reflects stand struc-
ture and its response to growing conditions and to 
silvicultural treatments. In an uneven-aged stand, 
stem dimensions vary greatly, hence the need to 
cluster them into classes of equal range similar to a 
distribution curve. According to Rondeux (1993), a 
mathematical model that fits the distribution of the 
number of stems by classes of diameter addresses 
can be used to address several types of concerns: 
(i) construction and use of management tools such 
as production or growth models by size classes; 
(ii) study of stand structure; (iii) estimation of the 
quantity of woody material by assortment (i.e. type 
of product) or by size category; (iv) simulation of 
silvicultural treatment standards.

Many theoretical distributions have been used 
to model the structure of forest stands. Several 
studies aimed at comparing the precision of several 
theoretical probability ditributions in order to ob-
tain the best fit of the structure with the theoretical 
distribution. In this context, it is worth mentioning 
the use of the Jedlinski deciles and the lognormal 
distribution (Dagnelie and Rondeux 1971) and the 
Pearson system for unimodal distributions (Sghaier 
and Palm 2002, Fonton and Sagbo 2004, Sghaier and 
Ammari 2012). Several estimations methods aimed 
at optimizing the accuracy of estimators of the dis-
tribution parameters. Liu et al. (2004) compared 
the effectiveness of three estimators: the maximum 
likelihood method, the method of moments and the 
percentile method. A statistical method based on 
nonlinear regression was developed by Abd kudus 
(1999) and linear regression method was also used 
and compared with percentiles by Hudak and Tiry-
akioglu (2009). 

Comparison of the Weibull distribution accuracy 
with that of the normal distribution (Lejeune 1994, 
Sghaier et al. 2016); the Beta distribution (Maltamo 
et al. 1995) and Johnson’s system (Zhoo and Mc 
Tague 1996, Zhang et al. 2003) indicated that among 
all the above mentioned distributions, the Weibull 
distribution better fit the diameter distribution in 
general. Such a distribution is characterized by 
a great flexibility of use (Rabhi et al. 2016) and is 
quite commonly used in specialized forest literature 
(Bailey and Dell 1973, Gorgoso et al. 2007, Lei 2008) 
due to its great flexibility and the existence of an ex-
plicit form of its distribution function, on one hand, 
and its ability to describe a wide range of uni-mod-
al distributions, including the frequency - inverted 
one, on the other hand. The truncated Weibull dis-
tribution was used to model the basal area diameter 

distribution of P. sylvestris, P. nigra and P. halepen-
sis stands in Catalonia (Spain) (Palahi et al. 2006). 
Authors show that although the stand structures 
varied widely, the Weibull function performed well 
in most of the cases.

The studied species has not been the subject of 
a distribution model. Given its importance, the pur-
pose of this study was to compare the accuracy of 
the normal, beta and Weibull distributions for de-
scribing diameter distributions in even-aged stands 
of Pinus halepensis in the regions of Aures (NE 
Algeria). The maximum likelihood and moments 
methods were used and compared to estimate the 
two parameters of Weibull distribution. Two dif-
ferent approaches, namely, parameters estimation 
and parameters prediction with stand variables or 
parameter recovery, were used to estimate the dis-
tributions’ parameter.

Material and methods

Study sites and field data
The pine forest of Ouled-Yakoub, located in the 

great massif of Aures (NE Algeria) has not been 
managed. We report that strong thinning from above 
was practiced during the 1970s. This choice was jus-
tified mainly, at that time, by the advanced age of 
most of the pine forest and the health of the trees. 
Except sporadic cuts (firewood and construction 
for household needs), the lack of regular logging 
affecting the entire massif following a management 
plan resulting in irregular and complex structures.

A pure random design (Duplat and Perrotte 
1981) was established in this pine forest in which 
230 circular plots of 10 ares were installed by read-
ing the table of random numbers. The selected plots 
are located in pure stands, normally dense and 
without gaps. The inventory of the plots concerned 
measurements of diameter and circumference at 
1.3m and of the total height of all the trees with di-
ameter at 1.3m ≥ 7 cm. A Pressler increment borer 
were used to extract increment cores. Age was esti-
mated from average basal area tree of each plot (as-
sumed even-aged) by counting the number of rings 
at 0.50 m.

The geological substratum dates back to the up-
per Cretaceous (Lafitte 1939). The bioclimate corre-
sponds to fresh and cold semi-arid. The vegetation 
cover comprises Aleppo pine as an upperstorey spe-
cies, accompanied by trees and shrubs such Quer-
cus rotundifolia L. and Junipersus oxycedrus L., 
etc. in the understorey and a more or less abundant 
herbaceous layer depending on slope and soil ero-
sion. Rendzina soil types are present in these for-
ests (Bentouati 2005) and soil depth is below 20 cm. 

Adjustment of a probability distribution requires 
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a large number of measurements. As whole, 6,394 
stems were recorded across 230 plots. The main 
dendrometric characteristics of the sampled plots 
are shown in Table 1. The distribution of all plots by 
category of size revealed a bell shaped distribution 
(Fig.1). The extreme classes (i.e. low and large di-
ameters) are poorly represented with values above 
55 cm representing less than 2% of the sampled 
trees. Most trees had a diameter ranging between 
16 and 45 cm. Distribution of plots by category of 
density (Fig.1) indicates the highest frequency of 
low-density plots and the low frequency of plots 
with densities exceeding 700 stems ha-1, resulting in 
the low average density (i.e. 385 trees ha-1) of the 
230 sampled plots.

Studied distributions 
The normal distribution 
The probability density function (PDF) of the 

normal distribution can be expressed as follows (1)  
(Dagnelie 2013):

𝑓𝑓(𝑥𝑥) = 1
𝜎𝜎√2𝜋𝜋 𝑒𝑒𝑒𝑒𝑒𝑒 [−1

2(𝑥𝑥−𝑚𝑚
𝜎𝜎 )2] (eq. 1)

𝑚̂𝑚 = 1
𝑛𝑛 ∑ 𝑥𝑥𝑖𝑖

𝑛𝑛
𝑖𝑖=1 (eq. 2)

𝜎̂𝜎 = √ 1
𝑛𝑛−1 ∑ (𝑥𝑥𝑖𝑖 − 𝑚̂𝑚)2𝑛𝑛

𝑖𝑖=1 (eq. 3)

(eq. 4) {𝑓𝑓(𝑥𝑥) = 𝑐𝑐(𝑥𝑥 − 𝐿𝐿)𝛼𝛼(𝑈𝑈 − 𝑥𝑥)𝜆𝜆     𝑖𝑖𝑖𝑖     𝐿𝐿 ≤ 𝑥𝑥 ≤ 𝑈𝑈
𝑓𝑓(𝑥𝑥) = 0        𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛      

𝑐𝑐 ∫ 𝑐𝑐(𝑥𝑥 − 𝐿𝐿)𝛼𝛼(𝑈𝑈 − 𝑥𝑥)𝜆𝜆𝑑𝑑𝑑𝑑 = 1𝑈𝑈
𝐿𝐿 (eq. 5)

𝜆𝜆 =
𝑧𝑧

𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟
2 (𝑧𝑧+1)2−1

𝑧𝑧+1 − 1 (eq. 6)

𝛼𝛼 = 𝑧𝑧(𝜆𝜆 + 1) − 1 (eq. 7)

𝑧𝑧 = 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟
1−𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟

;   𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑑̅𝑑−𝐿𝐿
𝑈𝑈−𝐿𝐿 and 𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟

2 = 𝑠𝑠2

(𝑈𝑈−𝐿𝐿)2

𝑐𝑐 = 1
𝑐𝑐 ∫ 𝑐𝑐(𝑥𝑥−𝐿𝐿)𝛼𝛼(𝑈𝑈−𝑥𝑥)𝜆𝜆𝑑𝑑𝑑𝑑𝑈𝑈
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(𝑈𝑈−𝐿𝐿)1+𝜆𝜆Γ(1+𝛼𝛼)Γ(1+𝜆𝜆) (eq. 8)

𝑓𝑓(𝑥𝑥) = 𝑐𝑐
𝑏𝑏 (𝑥𝑥

𝑏𝑏)
𝑐𝑐−1

𝑒𝑒𝑒𝑒𝑒𝑒 [− (𝑥𝑥
𝑏𝑏)

𝑐𝑐
] (eq. 9)

𝐿𝐿(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛; 𝑏𝑏, 𝑐𝑐) = ∏ 𝑐𝑐
𝑏𝑏 (𝑥𝑥𝑖𝑖

𝑏𝑏 )
𝑐𝑐−1

𝑒𝑒𝑒𝑒𝑒𝑒 [− (𝑥𝑥𝑖𝑖
𝑏𝑏 )

𝑐𝑐
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𝑖𝑖=1 (eq. 10)

𝑐̂𝑐 = [∑ 𝑥𝑥𝑖𝑖
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𝑖𝑖=1
∑ 𝑥𝑥𝑖𝑖

𝑐𝑐𝑛𝑛
𝑖𝑖=1

− 1
𝑛𝑛 ∑ 𝑙𝑙𝑙𝑙𝑙𝑙 (𝑥𝑥𝑖𝑖)𝑛𝑛

𝑖𝑖=1 ]
−1

(eq. 11)

 (eq. 1)

where x is the random variable, and m and σ are 
its arithmetic mean and standard deviation, respec-
tively.

Estimation of the mean parameter m and stand-
ard deviation σ was done with the following rela-
tionships (2 and 3):
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where n indicates the number of trees per plot 
and x

i
 (cm) the diameter at breast height of each 

tree.

The Beta distribution
The probability density function (PDF) of the 

Beta distribution has the following shape (4) (Gor-
goso et al. 2012):
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With:
x: the random variable (diameter at 1.30 m).
c: the function scale factor which ensures the 

equality (5):
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𝑐̂𝑐 = [∑ 𝑥𝑥𝑖𝑖
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L and U: The lower and upper limits of the dis-
tribution.

α and λ: The shape parameters of the distribu-
tion. 

The lower limit L of the distribution may take val-
ues such as 0, min (the minimum observed diameter 
in the plot), min/2, etc. The upper limit of the distri-
bution may take a higher or a lower value than the 
maximum observed diameter in the plot (U ≥ d

max
).

Estimation of parameters (6, 7 and 8) was 
achieved with the method of moments which is the 
only estimation method used in forestry (Gorgoso 
et al. 2012).
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Table 1 - Statistical parameters of measured stand variables 
(number of observations = 230).    

Stand
variables Min Max Mean 

Standard 
deviation

Age (years) 26 124 67.72 22.27
Dominant height «Hdom» (m) 7.67 23.7 14.18  3.35
Mean height «Hm» (m) 6 20.66 12.51  3.2
Quadratic mean diameter  
«dg» (cm)

9.87 68.46 33.35  11.96

Mean diameter « DBH » (cm) 9.86 62.94 30.89  10.85
Density « N » (trees ha -1) 160 1,760 385 247.62

Figure 1 - Distribution of the 230 plots per class of mean diameter 
and mean density.
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𝑏̂𝑏 = [1
𝑛𝑛 ∑ 𝑥𝑥𝑖𝑖

𝑐𝑐𝑛𝑛
𝑖𝑖=1 ]

1
𝑐𝑐                                     (eq. 12) 

 

𝑚𝑚𝑘𝑘 = (1
𝑏𝑏)

𝑘𝑘/𝑐𝑐
Γ (1 + k

c)     (eq. 13) 

 

𝑚𝑚1 = 𝜇𝜇 = (1
𝑏𝑏)

1/𝑐𝑐
Γ (1 + 1

c)     (eq. 14) 

 

𝑚𝑚2 = 𝜇𝜇2 + 𝜎𝜎2 = (1
𝑏𝑏)

2/𝑐𝑐
Γ (1 + 2

c)    (eq. 15) 

 

𝜎𝜎2 = 𝑚𝑚2 − 𝜇𝜇2 = (1
𝑏𝑏)

2/𝑐𝑐
[Γ (1 + 2

c) − Γ2 (1 + 1
c)]  (eq. 16) 

 

 

𝜎𝜎2

𝜇𝜇2 = (Γ(1+2
𝑐𝑐)−Γ2(1+1

𝑐𝑐))
Γ2(1+1

𝑐𝑐)  ⟹  𝜎𝜎2 = 𝑑̅𝑑2

Γ2(1+1
𝑐𝑐) (Γ2(1 + 2

𝑐𝑐) − Γ2(1 + 1
𝑐𝑐))  (eq. 17) 

 

𝑏𝑏 = 𝑑̅𝑑
Γ(1+1

𝑐𝑐)     (eq. 18) 

 

 

∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑
𝐼𝐼2

𝐼𝐼1
 

 

 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 1
𝑛𝑛 ∑ (𝑌𝑌𝑖𝑖 − 𝑌̂𝑌𝑖𝑖)𝑛𝑛

𝑖𝑖=1       (eq. 19) 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑀𝑀𝑀𝑀𝑀𝑀) = 1
𝑛𝑛 ∑ |𝑌𝑌𝑖𝑖 − 𝑌̂𝑌𝑖𝑖|𝑛𝑛

𝑖𝑖=1    (eq. 20) 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) = √∑ (𝑌𝑌𝑖𝑖−𝑌̂𝑌𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛−𝑝𝑝   (eq. 21) 

 

𝐸𝐸𝐸𝐸 = ∑ |𝑌𝑌𝑖𝑖 − 𝑌̂𝑌𝑖𝑖|𝑘𝑘
𝑖𝑖=1        (eq. 22) 

 

𝑣𝑣 = 42.093 − 7.323𝑑𝑑 + 0.612𝑑𝑑2      (eq. 23) 

                             (eq. 12)

where n equals the number of sample observa-
tions in a Weibull distribution and x

i 
the diameter of 

each tree. The value of c must be obtained by using 
standard iterative procedures and then it is used ob-
tain b.

The method of moments
The method of moments is another technique 

commonly used for parameter estimation. In the 
Weibull distribution, the k moment readily follows 
from the probability density function (13) (Lei 2008):

𝑏̂𝑏 = [1
𝑛𝑛 ∑ 𝑥𝑥𝑖𝑖

𝑐𝑐𝑛𝑛
𝑖𝑖=1 ]

1
𝑐𝑐                                     (eq. 12) 

 

𝑚𝑚𝑘𝑘 = (1
𝑏𝑏)

𝑘𝑘/𝑐𝑐
Γ (1 + k

c)     (eq. 13) 

 

𝑚𝑚1 = 𝜇𝜇 = (1
𝑏𝑏)

1/𝑐𝑐
Γ (1 + 1

c)     (eq. 14) 

 

𝑚𝑚2 = 𝜇𝜇2 + 𝜎𝜎2 = (1
𝑏𝑏)

2/𝑐𝑐
Γ (1 + 2

c)    (eq. 15) 

 

𝜎𝜎2 = 𝑚𝑚2 − 𝜇𝜇2 = (1
𝑏𝑏)

2/𝑐𝑐
[Γ (1 + 2

c) − Γ2 (1 + 1
c)]  (eq. 16) 

 

 

𝜎𝜎2

𝜇𝜇2 = (Γ(1+2
𝑐𝑐)−Γ2(1+1

𝑐𝑐))
Γ2(1+1

𝑐𝑐)  ⟹  𝜎𝜎2 = 𝑑̅𝑑2

Γ2(1+1
𝑐𝑐) (Γ2(1 + 2

𝑐𝑐) − Γ2(1 + 1
𝑐𝑐))  (eq. 17) 

 

𝑏𝑏 = 𝑑̅𝑑
Γ(1+1

𝑐𝑐)     (eq. 18) 

 

 

∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑
𝐼𝐼2

𝐼𝐼1
 

 

 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 1
𝑛𝑛 ∑ (𝑌𝑌𝑖𝑖 − 𝑌̂𝑌𝑖𝑖)𝑛𝑛

𝑖𝑖=1       (eq. 19) 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑀𝑀𝑀𝑀𝑀𝑀) = 1
𝑛𝑛 ∑ |𝑌𝑌𝑖𝑖 − 𝑌̂𝑌𝑖𝑖|𝑛𝑛

𝑖𝑖=1    (eq. 20) 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) = √∑ (𝑌𝑌𝑖𝑖−𝑌̂𝑌𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛−𝑝𝑝   (eq. 21) 

 

𝐸𝐸𝐸𝐸 = ∑ |𝑌𝑌𝑖𝑖 − 𝑌̂𝑌𝑖𝑖|𝑘𝑘
𝑖𝑖=1        (eq. 22) 

 

𝑣𝑣 = 42.093 − 7.323𝑑𝑑 + 0.612𝑑𝑑2      (eq. 23) 

                         (eq. 13)

Then this equation, we can find the first and the 
second moment as follows: 

𝑏̂𝑏 = [1
𝑛𝑛 ∑ 𝑥𝑥𝑖𝑖

𝑐𝑐𝑛𝑛
𝑖𝑖=1 ]

1
𝑐𝑐                                     (eq. 12) 

 

𝑚𝑚𝑘𝑘 = (1
𝑏𝑏)

𝑘𝑘/𝑐𝑐
Γ (1 + k

c)     (eq. 13) 

 

𝑚𝑚1 = 𝜇𝜇 = (1
𝑏𝑏)

1/𝑐𝑐
Γ (1 + 1

c)     (eq. 14) 

 

𝑚𝑚2 = 𝜇𝜇2 + 𝜎𝜎2 = (1
𝑏𝑏)

2/𝑐𝑐
Γ (1 + 2

c)    (eq. 15) 

 

𝜎𝜎2 = 𝑚𝑚2 − 𝜇𝜇2 = (1
𝑏𝑏)

2/𝑐𝑐
[Γ (1 + 2

c) − Γ2 (1 + 1
c)]  (eq. 16) 

 

 

𝜎𝜎2

𝜇𝜇2 = (Γ(1+2
𝑐𝑐)−Γ2(1+1

𝑐𝑐))
Γ2(1+1

𝑐𝑐)  ⟹  𝜎𝜎2 = 𝑑̅𝑑2

Γ2(1+1
𝑐𝑐) (Γ2(1 + 2

𝑐𝑐) − Γ2(1 + 1
𝑐𝑐))  (eq. 17) 

 

𝑏𝑏 = 𝑑̅𝑑
Γ(1+1

𝑐𝑐)     (eq. 18) 

 

 

∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑
𝐼𝐼2

𝐼𝐼1
 

 

 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 1
𝑛𝑛 ∑ (𝑌𝑌𝑖𝑖 − 𝑌̂𝑌𝑖𝑖)𝑛𝑛

𝑖𝑖=1       (eq. 19) 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑀𝑀𝑀𝑀𝑀𝑀) = 1
𝑛𝑛 ∑ |𝑌𝑌𝑖𝑖 − 𝑌̂𝑌𝑖𝑖|𝑛𝑛

𝑖𝑖=1    (eq. 20) 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) = √∑ (𝑌𝑌𝑖𝑖−𝑌̂𝑌𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛−𝑝𝑝   (eq. 21) 

 

𝐸𝐸𝐸𝐸 = ∑ |𝑌𝑌𝑖𝑖 − 𝑌̂𝑌𝑖𝑖|𝑘𝑘
𝑖𝑖=1        (eq. 22) 

 

𝑣𝑣 = 42.093 − 7.323𝑑𝑑 + 0.612𝑑𝑑2      (eq. 23) 

                   (eq. 14)

𝑏̂𝑏 = [1
𝑛𝑛 ∑ 𝑥𝑥𝑖𝑖

𝑐𝑐𝑛𝑛
𝑖𝑖=1 ]

1
𝑐𝑐                                     (eq. 12) 

 

𝑚𝑚𝑘𝑘 = (1
𝑏𝑏)

𝑘𝑘/𝑐𝑐
Γ (1 + k

c)     (eq. 13) 

 

𝑚𝑚1 = 𝜇𝜇 = (1
𝑏𝑏)

1/𝑐𝑐
Γ (1 + 1

c)     (eq. 14) 

 

𝑚𝑚2 = 𝜇𝜇2 + 𝜎𝜎2 = (1
𝑏𝑏)

2/𝑐𝑐
Γ (1 + 2

c)    (eq. 15) 

 

𝜎𝜎2 = 𝑚𝑚2 − 𝜇𝜇2 = (1
𝑏𝑏)

2/𝑐𝑐
[Γ (1 + 2

c) − Γ2 (1 + 1
c)]  (eq. 16) 

 

 

𝜎𝜎2

𝜇𝜇2 = (Γ(1+2
𝑐𝑐)−Γ2(1+1

𝑐𝑐))
Γ2(1+1

𝑐𝑐)  ⟹  𝜎𝜎2 = 𝑑̅𝑑2

Γ2(1+1
𝑐𝑐) (Γ2(1 + 2

𝑐𝑐) − Γ2(1 + 1
𝑐𝑐))  (eq. 17) 

 

𝑏𝑏 = 𝑑̅𝑑
Γ(1+1

𝑐𝑐)     (eq. 18) 

 

 

∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑
𝐼𝐼2

𝐼𝐼1
 

 

 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 1
𝑛𝑛 ∑ (𝑌𝑌𝑖𝑖 − 𝑌̂𝑌𝑖𝑖)𝑛𝑛

𝑖𝑖=1       (eq. 19) 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑀𝑀𝑀𝑀𝑀𝑀) = 1
𝑛𝑛 ∑ |𝑌𝑌𝑖𝑖 − 𝑌̂𝑌𝑖𝑖|𝑛𝑛

𝑖𝑖=1    (eq. 20) 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) = √∑ (𝑌𝑌𝑖𝑖−𝑌̂𝑌𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛−𝑝𝑝   (eq. 21) 

 

𝐸𝐸𝐸𝐸 = ∑ |𝑌𝑌𝑖𝑖 − 𝑌̂𝑌𝑖𝑖|𝑘𝑘
𝑖𝑖=1        (eq. 22) 

 

𝑣𝑣 = 42.093 − 7.323𝑑𝑑 + 0.612𝑑𝑑2      (eq. 23) 

       (eq. 15)

which gives:

̂ = [1 ∑ =1 ]
1

                                     (eq. 12) 

 

= (1)
/
Γ (1 + k

c
)      (eq. 13) 

 

1 = = (1)
1/

Γ (1 + 1
c
)      (eq. 14) 

 

2 = 2 + 2 = (1)
2/

Γ (1 + 2
c
)    (eq. 15) 

 

2= 2− 2 =(1)
2/

[Γ(1 + 2
c
)−Γ2(1 + 1

c
)]  (eq. 16) 

 

 

2

2 =
(Γ(1+2)−Γ2(1+1))

Γ2(1+1)
 ⟹  2 =

̅2

Γ2(1+1)
(Γ2(1 + 2) − Γ2(1 + 1))  (eq. 17) 

 

=
̅

Γ(1+1)
     (eq. 18) 

 

 

∫ ( )
2

1

 

 

 

= 1 ∑ ( − ̂ )=1       (eq. 19) 

 

   ( ) = 1 ∑ | − ̂ |=1    (eq. 20) 

 

    ( ) = √∑ ( − ̂ )2
=1

−
  (eq. 21) 

 

= ∑ | − ̂ |=1        (eq. 22) 

 

= 42.093 − 7.323 + 0.612 2      (eq. 23) 

(eq. 16)

where σ2 is the variance of tree diameters in a 
plot, and m

1
 (14), m

2
 (15) are the arithmetic and 

quadratic mean diameter in a plot, respectively. 
When σ2 (16) is divided by the square of m

1
, the ex-

pression for obtaining c (17) is :

̂ = [1 ∑ =1 ]
1

                                     (eq. 12) 

 

= (1)
/
Γ (1 + k

c
)      (eq. 13) 

 

1 = = (1)
1/

Γ (1 + 1
c
)      (eq. 14) 

 

2 = 2 + 2 = (1)
2/

Γ (1 + 2
c
)    (eq. 15) 

 

2= 2− 2 =(1)
2/

[Γ(1 + 2
c
)−Γ2(1 + 1

c
)]  (eq. 16) 

 

 

2

2 =
(Γ(1+2)−Γ2(1+1))

Γ2(1+1)
 ⟹  2 =

̅2

Γ2(1+1)
(Γ2(1 + 2) − Γ2(1 + 1))  (eq. 17) 

 

=
̅

Γ(1+1)
     (eq. 18) 

 

 

∫ ( )
2

1

 

 

 

= 1 ∑ ( − ̂ )=1       (eq. 19) 

 

   ( ) = 1 ∑ | − ̂ |=1    (eq. 20) 

 

    ( ) = √∑ ( − ̂ )2
=1

−
  (eq. 21) 

 

= ∑ | − ̂ |=1        (eq. 22) 

 

= 42.093 − 7.323 + 0.612 2      (eq. 23) 

̂ = [1 ∑ =1 ]
1

                                     (eq. 12) 

 

= (1)
/
Γ (1 + k

c
)      (eq. 13) 

 

1 = = (1)
1/

Γ (1 + 1
c
)      (eq. 14) 

 

2 = 2 + 2 = (1)
2/

Γ (1 + 2
c
)    (eq. 15) 

 

2= 2− 2 =(1)
2/

[Γ(1 + 2
c
)−Γ2(1 + 1

c
)]  (eq. 16) 

 

 

2

2 =
(Γ(1+2)−Γ2(1+1))

Γ2(1+1)
 ⟹  2 =

̅2

Γ2(1+1)
(Γ2(1 + 2) − Γ2(1 + 1))  (eq. 17) 

 

=
̅

Γ(1+1)
     (eq. 18) 

 

 

∫ ( )
2

1

 

 

 

= 1 ∑ ( − ̂ )=1       (eq. 19) 

 

   ( ) = 1 ∑ | − ̂ |=1    (eq. 20) 

 

    ( ) = √∑ ( − ̂ )2
=1

−
  (eq. 21) 

 

= ∑ | − ̂ |=1        (eq. 22) 

 

= 42.093 − 7.323 + 0.612 2      (eq. 23) 

  (eq. 17)

In order to estimate b and c, we need to calculate 
the arithmetic mean diameter d̄ and the variance σ2 
of the observed distribution and obtain the estima-
tor of c. Last equation was resolved by an iterative 
procedure. When the value of the location parame-
ter (a) is zero, the scale parameter (b) can then be 
calculated directly using the following equation (18) 
(Gorgoso et al. 2007):

 		

𝑏̂𝑏 = [1
𝑛𝑛 ∑ 𝑥𝑥𝑖𝑖

𝑐𝑐𝑛𝑛
𝑖𝑖=1 ]

1
𝑐𝑐                                     (eq. 12) 

 

𝑚𝑚𝑘𝑘 = (1
𝑏𝑏)

𝑘𝑘/𝑐𝑐
Γ (1 + k

c)     (eq. 13) 

 

𝑚𝑚1 = 𝜇𝜇 = (1
𝑏𝑏)

1/𝑐𝑐
Γ (1 + 1

c)     (eq. 14) 

 

𝑚𝑚2 = 𝜇𝜇2 + 𝜎𝜎2 = (1
𝑏𝑏)

2/𝑐𝑐
Γ (1 + 2

c)    (eq. 15) 

 

𝜎𝜎2 = 𝑚𝑚2 − 𝜇𝜇2 = (1
𝑏𝑏)

2/𝑐𝑐
[Γ (1 + 2

c) − Γ2 (1 + 1
c)]  (eq. 16) 

 

 

𝜎𝜎2

𝜇𝜇2 = (Γ(1+2
𝑐𝑐)−Γ2(1+1

𝑐𝑐))
Γ2(1+1

𝑐𝑐)  ⟹  𝜎𝜎2 = 𝑑̅𝑑2

Γ2(1+1
𝑐𝑐) (Γ2(1 + 2

𝑐𝑐) − Γ2(1 + 1
𝑐𝑐))  (eq. 17) 

 

𝑏𝑏 = 𝑑̅𝑑
Γ(1+1

𝑐𝑐)     (eq. 18) 

 

 

∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑
𝐼𝐼2

𝐼𝐼1
 

 

 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 1
𝑛𝑛 ∑ (𝑌𝑌𝑖𝑖 − 𝑌̂𝑌𝑖𝑖)𝑛𝑛

𝑖𝑖=1       (eq. 19) 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑀𝑀𝑀𝑀𝑀𝑀) = 1
𝑛𝑛 ∑ |𝑌𝑌𝑖𝑖 − 𝑌̂𝑌𝑖𝑖|𝑛𝑛

𝑖𝑖=1    (eq. 20) 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) = √∑ (𝑌𝑌𝑖𝑖−𝑌̂𝑌𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛−𝑝𝑝   (eq. 21) 

 

𝐸𝐸𝐸𝐸 = ∑ |𝑌𝑌𝑖𝑖 − 𝑌̂𝑌𝑖𝑖|𝑘𝑘
𝑖𝑖=1        (eq. 22) 

 

𝑣𝑣 = 42.093 − 7.323𝑑𝑑 + 0.612𝑑𝑑2      (eq. 23) 

                                      (eq. 18)

where d̄ is the arithmetic mean diameter.

	 Prediction of parameters of the distribu-
tions as a function of stand variables 
To make the stem distribution models dynamic 

and dependent on stand characteristics, correlations 
between parameter estimates of the studied distri-
butions and stand characteristics were calculated. 

Where:

𝑓𝑓(𝑥𝑥) = 1
𝜎𝜎√2𝜋𝜋 𝑒𝑒𝑒𝑒𝑒𝑒 [−1

2(𝑥𝑥−𝑚𝑚
𝜎𝜎 )2] (eq. 1)

𝑚̂𝑚 = 1
𝑛𝑛 ∑ 𝑥𝑥𝑖𝑖

𝑛𝑛
𝑖𝑖=1 (eq. 2)

𝜎̂𝜎 = √ 1
𝑛𝑛−1 ∑ (𝑥𝑥𝑖𝑖 − 𝑚̂𝑚)2𝑛𝑛

𝑖𝑖=1 (eq. 3)

(eq. 4) {𝑓𝑓(𝑥𝑥) = 𝑐𝑐(𝑥𝑥 − 𝐿𝐿)𝛼𝛼(𝑈𝑈 − 𝑥𝑥)𝜆𝜆     𝑖𝑖𝑖𝑖     𝐿𝐿 ≤ 𝑥𝑥 ≤ 𝑈𝑈
𝑓𝑓(𝑥𝑥) = 0        𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛      

𝑐𝑐 ∫ 𝑐𝑐(𝑥𝑥 − 𝐿𝐿)𝛼𝛼(𝑈𝑈 − 𝑥𝑥)𝜆𝜆𝑑𝑑𝑑𝑑 = 1𝑈𝑈
𝐿𝐿 (eq. 5)

𝜆𝜆 =
𝑧𝑧

𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟
2 (𝑧𝑧+1)2−1

𝑧𝑧+1 − 1 (eq. 6)

𝛼𝛼 = 𝑧𝑧(𝜆𝜆 + 1) − 1 (eq. 7)

𝑧𝑧 = 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟
1−𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟

;   𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑑̅𝑑−𝐿𝐿
𝑈𝑈−𝐿𝐿 and 𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟

2 = 𝑠𝑠2

(𝑈𝑈−𝐿𝐿)2

𝑐𝑐 = 1
𝑐𝑐 ∫ 𝑐𝑐(𝑥𝑥−𝐿𝐿)𝛼𝛼(𝑈𝑈−𝑥𝑥)𝜆𝜆𝑑𝑑𝑑𝑑𝑈𝑈

𝐿𝐿
= (𝑈𝑈−𝐿𝐿)−𝛼𝛼Γ(2+𝛼𝛼+𝜆𝜆)

(𝑈𝑈−𝐿𝐿)1+𝜆𝜆Γ(1+𝛼𝛼)Γ(1+𝜆𝜆) (eq. 8)

𝑓𝑓(𝑥𝑥) = 𝑐𝑐
𝑏𝑏 (𝑥𝑥

𝑏𝑏)
𝑐𝑐−1

𝑒𝑒𝑒𝑒𝑒𝑒 [− (𝑥𝑥
𝑏𝑏)

𝑐𝑐
] (eq. 9)

𝐿𝐿(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛; 𝑏𝑏, 𝑐𝑐) = ∏ 𝑐𝑐
𝑏𝑏 (𝑥𝑥𝑖𝑖

𝑏𝑏 )
𝑐𝑐−1

𝑒𝑒𝑒𝑒𝑒𝑒 [− (𝑥𝑥𝑖𝑖
𝑏𝑏 )

𝑐𝑐
]𝑛𝑛

𝑖𝑖=1 (eq. 10)

𝑐̂𝑐 = [∑ 𝑥𝑥𝑖𝑖
𝑐𝑐×𝑙𝑙𝑙𝑙𝑙𝑙 (𝑥𝑥𝑖𝑖)𝑛𝑛

𝑖𝑖=1
∑ 𝑥𝑥𝑖𝑖

𝑐𝑐𝑛𝑛
𝑖𝑖=1

− 1
𝑛𝑛 ∑ 𝑙𝑙𝑙𝑙𝑙𝑙 (𝑥𝑥𝑖𝑖)𝑛𝑛

𝑖𝑖=1 ]
−1

(eq. 11)

and  

𝑓𝑓(𝑥𝑥) = 1
𝜎𝜎√2𝜋𝜋 𝑒𝑒𝑒𝑒𝑒𝑒 [−1

2(𝑥𝑥−𝑚𝑚
𝜎𝜎 )2] (eq. 1)

𝑚̂𝑚 = 1
𝑛𝑛 ∑ 𝑥𝑥𝑖𝑖

𝑛𝑛
𝑖𝑖=1 (eq. 2)

𝜎̂𝜎 = √ 1
𝑛𝑛−1 ∑ (𝑥𝑥𝑖𝑖 − 𝑚̂𝑚)2𝑛𝑛

𝑖𝑖=1 (eq. 3)

(eq. 4) {𝑓𝑓(𝑥𝑥) = 𝑐𝑐(𝑥𝑥 − 𝐿𝐿)𝛼𝛼(𝑈𝑈 − 𝑥𝑥)𝜆𝜆     𝑖𝑖𝑖𝑖     𝐿𝐿 ≤ 𝑥𝑥 ≤ 𝑈𝑈
𝑓𝑓(𝑥𝑥) = 0        𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛      

𝑐𝑐 ∫ 𝑐𝑐(𝑥𝑥 − 𝐿𝐿)𝛼𝛼(𝑈𝑈 − 𝑥𝑥)𝜆𝜆𝑑𝑑𝑑𝑑 = 1𝑈𝑈
𝐿𝐿 (eq. 5)

𝜆𝜆 =
𝑧𝑧

𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟
2 (𝑧𝑧+1)2−1

𝑧𝑧+1 − 1 (eq. 6)

𝛼𝛼 = 𝑧𝑧(𝜆𝜆 + 1) − 1 (eq. 7)

𝑧𝑧 = 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟
1−𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟

;   𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑑̅𝑑−𝐿𝐿
𝑈𝑈−𝐿𝐿 and 𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟

2 = 𝑠𝑠2

(𝑈𝑈−𝐿𝐿)2

𝑐𝑐 = 1
𝑐𝑐 ∫ 𝑐𝑐(𝑥𝑥−𝐿𝐿)𝛼𝛼(𝑈𝑈−𝑥𝑥)𝜆𝜆𝑑𝑑𝑑𝑑𝑈𝑈

𝐿𝐿
= (𝑈𝑈−𝐿𝐿)−𝛼𝛼Γ(2+𝛼𝛼+𝜆𝜆)

(𝑈𝑈−𝐿𝐿)1+𝜆𝜆Γ(1+𝛼𝛼)Γ(1+𝜆𝜆) (eq. 8)

𝑓𝑓(𝑥𝑥) = 𝑐𝑐
𝑏𝑏 (𝑥𝑥

𝑏𝑏)
𝑐𝑐−1

𝑒𝑒𝑒𝑒𝑒𝑒 [− (𝑥𝑥
𝑏𝑏)

𝑐𝑐
] (eq. 9)

𝐿𝐿(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛; 𝑏𝑏, 𝑐𝑐) = ∏ 𝑐𝑐
𝑏𝑏 (𝑥𝑥𝑖𝑖

𝑏𝑏 )
𝑐𝑐−1

𝑒𝑒𝑒𝑒𝑒𝑒 [− (𝑥𝑥𝑖𝑖
𝑏𝑏 )

𝑐𝑐
]𝑛𝑛

𝑖𝑖=1 (eq. 10)

𝑐̂𝑐 = [∑ 𝑥𝑥𝑖𝑖
𝑐𝑐×𝑙𝑙𝑙𝑙𝑙𝑙 (𝑥𝑥𝑖𝑖)𝑛𝑛

𝑖𝑖=1
∑ 𝑥𝑥𝑖𝑖

𝑐𝑐𝑛𝑛
𝑖𝑖=1

− 1
𝑛𝑛 ∑ 𝑙𝑙𝑙𝑙𝑙𝑙 (𝑥𝑥𝑖𝑖)𝑛𝑛

𝑖𝑖=1 ]
−1

(eq. 11)

𝑓𝑓(𝑥𝑥) = 1
𝜎𝜎√2𝜋𝜋 𝑒𝑒𝑒𝑒𝑒𝑒 [−1

2(𝑥𝑥−𝑚𝑚
𝜎𝜎 )2] (eq. 1)

𝑚̂𝑚 = 1
𝑛𝑛 ∑ 𝑥𝑥𝑖𝑖

𝑛𝑛
𝑖𝑖=1 (eq. 2)

𝜎̂𝜎 = √ 1
𝑛𝑛−1 ∑ (𝑥𝑥𝑖𝑖 − 𝑚̂𝑚)2𝑛𝑛

𝑖𝑖=1 (eq. 3)

(eq. 4) {𝑓𝑓(𝑥𝑥) = 𝑐𝑐(𝑥𝑥 − 𝐿𝐿)𝛼𝛼(𝑈𝑈 − 𝑥𝑥)𝜆𝜆     𝑖𝑖𝑖𝑖     𝐿𝐿 ≤ 𝑥𝑥 ≤ 𝑈𝑈
𝑓𝑓(𝑥𝑥) = 0        𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛      

𝑐𝑐 ∫ 𝑐𝑐(𝑥𝑥 − 𝐿𝐿)𝛼𝛼(𝑈𝑈 − 𝑥𝑥)𝜆𝜆𝑑𝑑𝑑𝑑 = 1𝑈𝑈
𝐿𝐿 (eq. 5)

𝜆𝜆 =
𝑧𝑧

𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟
2 (𝑧𝑧+1)2−1

𝑧𝑧+1 − 1 (eq. 6)

𝛼𝛼 = 𝑧𝑧(𝜆𝜆 + 1) − 1 (eq. 7)

𝑧𝑧 = 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟
1−𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟

;   𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑑̅𝑑−𝐿𝐿
𝑈𝑈−𝐿𝐿 and 𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟

2 = 𝑠𝑠2

(𝑈𝑈−𝐿𝐿)2

𝑐𝑐 = 1
𝑐𝑐 ∫ 𝑐𝑐(𝑥𝑥−𝐿𝐿)𝛼𝛼(𝑈𝑈−𝑥𝑥)𝜆𝜆𝑑𝑑𝑑𝑑𝑈𝑈

𝐿𝐿
= (𝑈𝑈−𝐿𝐿)−𝛼𝛼Γ(2+𝛼𝛼+𝜆𝜆)

(𝑈𝑈−𝐿𝐿)1+𝜆𝜆Γ(1+𝛼𝛼)Γ(1+𝜆𝜆) (eq. 8)

𝑓𝑓(𝑥𝑥) = 𝑐𝑐
𝑏𝑏 (𝑥𝑥

𝑏𝑏)
𝑐𝑐−1

𝑒𝑒𝑒𝑒𝑒𝑒 [− (𝑥𝑥
𝑏𝑏)

𝑐𝑐
] (eq. 9)

𝐿𝐿(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛; 𝑏𝑏, 𝑐𝑐) = ∏ 𝑐𝑐
𝑏𝑏 (𝑥𝑥𝑖𝑖

𝑏𝑏 )
𝑐𝑐−1

𝑒𝑒𝑒𝑒𝑒𝑒 [− (𝑥𝑥𝑖𝑖
𝑏𝑏 )

𝑐𝑐
]𝑛𝑛

𝑖𝑖=1 (eq. 10)

𝑐̂𝑐 = [∑ 𝑥𝑥𝑖𝑖
𝑐𝑐×𝑙𝑙𝑙𝑙𝑙𝑙 (𝑥𝑥𝑖𝑖)𝑛𝑛

𝑖𝑖=1
∑ 𝑥𝑥𝑖𝑖

𝑐𝑐𝑛𝑛
𝑖𝑖=1

− 1
𝑛𝑛 ∑ 𝑙𝑙𝑙𝑙𝑙𝑙 (𝑥𝑥𝑖𝑖)𝑛𝑛

𝑖𝑖=1 ]
−1

(eq. 11)

(eq. 8)

s2 et d̄ : sample variance and mean, respectively.
Γ : Gamma function. 

The values used for the L and U limits of the beta 
distribution, in this study, are 0 and (d

max
 + 1). The 

value 1 is added to d
max

 (maximum diameter) as the 
upper limit (U) to ensure a non-zero estimate of 
maximum tree diameters in the plot.

The two parameter - Weibull distribution
In some studies, the parameter a is arbitrarily 

fixed at 0.5 d
min

 (Lei 2008) or at zero (Gorgoso et al. 
2007), thus reducing the function to a two-parame-
ter Weibull distribution which is easier to model and 
provides similar results to those of the three-param-
eter Weibull function.

The probability density function of the two pa-
rameter-Weibull distribution has the following shape 
(9) (Gorgoso et al. 2012, Sghaier et al. 2016):

𝑓𝑓(𝑥𝑥) = 1
𝜎𝜎√2𝜋𝜋 𝑒𝑒𝑒𝑒𝑒𝑒 [−1

2(𝑥𝑥−𝑚𝑚
𝜎𝜎 )2] (eq. 1)

𝑚̂𝑚 = 1
𝑛𝑛 ∑ 𝑥𝑥𝑖𝑖

𝑛𝑛
𝑖𝑖=1 (eq. 2)

𝜎̂𝜎 = √ 1
𝑛𝑛−1 ∑ (𝑥𝑥𝑖𝑖 − 𝑚̂𝑚)2𝑛𝑛

𝑖𝑖=1 (eq. 3)

(eq. 4) {𝑓𝑓(𝑥𝑥) = 𝑐𝑐(𝑥𝑥 − 𝐿𝐿)𝛼𝛼(𝑈𝑈 − 𝑥𝑥)𝜆𝜆     𝑖𝑖𝑖𝑖     𝐿𝐿 ≤ 𝑥𝑥 ≤ 𝑈𝑈
𝑓𝑓(𝑥𝑥) = 0        𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛      

𝑐𝑐 ∫ 𝑐𝑐(𝑥𝑥 − 𝐿𝐿)𝛼𝛼(𝑈𝑈 − 𝑥𝑥)𝜆𝜆𝑑𝑑𝑑𝑑 = 1𝑈𝑈
𝐿𝐿 (eq. 5)

𝜆𝜆 =
𝑧𝑧

𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟
2 (𝑧𝑧+1)2−1

𝑧𝑧+1 − 1 (eq. 6)

𝛼𝛼 = 𝑧𝑧(𝜆𝜆 + 1) − 1 (eq. 7)

𝑧𝑧 = 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟
1−𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟

;   𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑑̅𝑑−𝐿𝐿
𝑈𝑈−𝐿𝐿 and 𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟

2 = 𝑠𝑠2

(𝑈𝑈−𝐿𝐿)2

𝑐𝑐 = 1
𝑐𝑐 ∫ 𝑐𝑐(𝑥𝑥−𝐿𝐿)𝛼𝛼(𝑈𝑈−𝑥𝑥)𝜆𝜆𝑑𝑑𝑑𝑑𝑈𝑈

𝐿𝐿
= (𝑈𝑈−𝐿𝐿)−𝛼𝛼Γ(2+𝛼𝛼+𝜆𝜆)

(𝑈𝑈−𝐿𝐿)1+𝜆𝜆Γ(1+𝛼𝛼)Γ(1+𝜆𝜆) (eq. 8)

𝑓𝑓(𝑥𝑥) = 𝑐𝑐
𝑏𝑏 (𝑥𝑥

𝑏𝑏)
𝑐𝑐−1

𝑒𝑒𝑒𝑒𝑒𝑒 [− (𝑥𝑥
𝑏𝑏)

𝑐𝑐
] (eq. 9)

𝐿𝐿(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛; 𝑏𝑏, 𝑐𝑐) = ∏ 𝑐𝑐
𝑏𝑏 (𝑥𝑥𝑖𝑖

𝑏𝑏 )
𝑐𝑐−1

𝑒𝑒𝑒𝑒𝑒𝑒 [− (𝑥𝑥𝑖𝑖
𝑏𝑏 )

𝑐𝑐
]𝑛𝑛

𝑖𝑖=1 (eq. 10)

𝑐̂𝑐 = [∑ 𝑥𝑥𝑖𝑖
𝑐𝑐×𝑙𝑙𝑙𝑙𝑙𝑙 (𝑥𝑥𝑖𝑖)𝑛𝑛

𝑖𝑖=1
∑ 𝑥𝑥𝑖𝑖

𝑐𝑐𝑛𝑛
𝑖𝑖=1

− 1
𝑛𝑛 ∑ 𝑙𝑙𝑙𝑙𝑙𝑙 (𝑥𝑥𝑖𝑖)𝑛𝑛

𝑖𝑖=1 ]
−1

(eq. 11)

                        (eq. 9)

With:
b: scale parameter.
c: shape parameter. 
Two methods were used to estimate the param-

eters of the Weibull distribution, namely the maxi-
mum likelihood method (ML) and the method of 
moments (MoM). 

The Maximum Likelihood Method 
The maximum likelihood method is a commonly 

used procedure for the Weibull distribution in for-
estry because it has certain desirable properties (Lei 
2008). Estimation of the parameters using maximum 
likelihood has been found to produce consistently 
better goodness-of-fit statistics compared to other 
methods, but it also puts the greatest demands on the 
computational resources (Cao and McCarty 2006). If 
we consider the Weibull probability density function, 
then the likelihood function (L) will be [10]:

( ) = 1
√2

[−1
2( − )2] (eq. 1)

̂ = 1 ∑ =1 (eq. 2)

̂ = √ 1
−1
∑ ( − ̂ )2

=1 (eq. 3)

(eq. 4) { ( )= ( − ) ( − ) ≤ ≤
( )=0   

∫ ( − ) ( − ) = 1 (eq. 5)

=
2 ( +1)2−1

+1
− 1 (eq. 6)

= ( + 1) − 1 (eq. 7)

=
1−

;  =
̅ −
−

and 2 =
2

( − )2

= 1

∫ ( − ) ( − )
= ( − )− Γ(2+ + )

( − )1+ Γ(1+ )Γ(1+ )
(eq. 8)

( ) = ( )
−1

[− ( ) ] (eq. 9)

( 1, … , ; , )=∏ ( )
−1

[−( ) ]=1 (eq. 10)

̂ = [∑ ×  ( )=1
∑ =1

− 1 ∑  ( )=1 ]
−1

(eq. 11)

(eq. 10)

Taking the logarithms from this equation, differ-
entiating with respect to b and c respectively, and 
satisfying the following equations (11 and 12) (Na-
nos and Montero 2002, Eerikainen and Maltamo 
2003 ):

𝑓𝑓(𝑥𝑥) = 1
𝜎𝜎√2𝜋𝜋 𝑒𝑒𝑒𝑒𝑒𝑒 [−1

2(𝑥𝑥−𝑚𝑚
𝜎𝜎 )2] (eq. 1)

𝑚̂𝑚 = 1
𝑛𝑛 ∑ 𝑥𝑥𝑖𝑖

𝑛𝑛
𝑖𝑖=1 (eq. 2)

𝜎̂𝜎 = √ 1
𝑛𝑛−1 ∑ (𝑥𝑥𝑖𝑖 − 𝑚̂𝑚)2𝑛𝑛

𝑖𝑖=1 (eq. 3)

(eq. 4) {𝑓𝑓(𝑥𝑥) = 𝑐𝑐(𝑥𝑥 − 𝐿𝐿)𝛼𝛼(𝑈𝑈 − 𝑥𝑥)𝜆𝜆     𝑖𝑖𝑖𝑖     𝐿𝐿 ≤ 𝑥𝑥 ≤ 𝑈𝑈
𝑓𝑓(𝑥𝑥) = 0        𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛      

𝑐𝑐 ∫ 𝑐𝑐(𝑥𝑥 − 𝐿𝐿)𝛼𝛼(𝑈𝑈 − 𝑥𝑥)𝜆𝜆𝑑𝑑𝑑𝑑 = 1𝑈𝑈
𝐿𝐿 (eq. 5)

𝜆𝜆 =
𝑧𝑧

𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟
2 (𝑧𝑧+1)2−1

𝑧𝑧+1 − 1 (eq. 6)

𝛼𝛼 = 𝑧𝑧(𝜆𝜆 + 1) − 1 (eq. 7)

𝑧𝑧 = 𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟
1−𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟

;   𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑑̅𝑑−𝐿𝐿
𝑈𝑈−𝐿𝐿 and 𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟

2 = 𝑠𝑠2

(𝑈𝑈−𝐿𝐿)2

𝑐𝑐 = 1
𝑐𝑐 ∫ 𝑐𝑐(𝑥𝑥−𝐿𝐿)𝛼𝛼(𝑈𝑈−𝑥𝑥)𝜆𝜆𝑑𝑑𝑑𝑑𝑈𝑈

𝐿𝐿
= (𝑈𝑈−𝐿𝐿)−𝛼𝛼Γ(2+𝛼𝛼+𝜆𝜆)

(𝑈𝑈−𝐿𝐿)1+𝜆𝜆Γ(1+𝛼𝛼)Γ(1+𝜆𝜆) (eq. 8)

𝑓𝑓(𝑥𝑥) = 𝑐𝑐
𝑏𝑏 (𝑥𝑥

𝑏𝑏)
𝑐𝑐−1

𝑒𝑒𝑒𝑒𝑒𝑒 [− (𝑥𝑥
𝑏𝑏)

𝑐𝑐
] (eq. 9)

𝐿𝐿(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛; 𝑏𝑏, 𝑐𝑐) = ∏ 𝑐𝑐
𝑏𝑏 (𝑥𝑥𝑖𝑖

𝑏𝑏 )
𝑐𝑐−1

𝑒𝑒𝑒𝑒𝑒𝑒 [− (𝑥𝑥𝑖𝑖
𝑏𝑏 )

𝑐𝑐
]𝑛𝑛

𝑖𝑖=1 (eq. 10)

𝑐̂𝑐 = [∑ 𝑥𝑥𝑖𝑖
𝑐𝑐×𝑙𝑙𝑙𝑙𝑙𝑙 (𝑥𝑥𝑖𝑖)𝑛𝑛

𝑖𝑖=1
∑ 𝑥𝑥𝑖𝑖

𝑐𝑐𝑛𝑛
𝑖𝑖=1

− 1
𝑛𝑛 ∑ 𝑙𝑙𝑙𝑙𝑙𝑙 (𝑥𝑥𝑖𝑖)𝑛𝑛

𝑖𝑖=1 ]
−1

(eq. 11)      (eq. 11)
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Linear and nonlinear regressions were implemented 
in order to obtain models explaining parameters of 
such distributions according to stand descriptors. 
Unlike the first approach, which consists in estimat-
ing the parameters of each distribution directly from 
the raw data (i.e. diameter at 1,30 m) and which is 
called the parameter estimation method, the second 
approach (the parameter recovery method), aims at 
predicting the same parameters from stand charac-
teristics (Vanclay 1994). With this second approach, 
stem distribution models can be used to partition 
trees within-stand by diameter class, either direct-
ly, from the average magnitudes obtained from the 
plots of measurement, or indirectly, as complemen-
tary tools to yield tables. 

The parameter recovery approach may offer a 
more robust alternative. The parameters of the dis-
tribution are predicted indirectly by matching the 
moments of the distribution to predicted stand at-
tributes such as stand basal area and mean diame-
ter. This approach is an efficient way to estimate the 
parameters of the Weibull distribution (e.g. Reyn-
olds et al. 1988 in Vanclay 1994). The parameter 
prediction models developed by Palahi et al. (2006) 
enable one to predict the basal area diameter dis-
tribution for a given stand of P. sylvestris, P. nigra 
or P. halepensis using rather limited information 
(stand basal area, number of trees per hectare or 
quadratic mean and elevation). Sghaier et al. (2016) 
note that the highest Pearson correlation between 
the parameters of Normal and Weibull distribution 
and the stand variables of Tetraclinis articulata 
stands was obtained with quadratic mean and its 
natural logarithm transformations. Stand charac-
teristics we tested in the models were: stand age 
(Age), density (N), dominant height (H

d
), average 

height (H
m
), quadratic mean diameter (d

g
), arithme-

tic mean diameter (d̄), the first percentile (P
25

); the 
median (P

50
); the third percentile (P

75
); the quotient 

of the first percentile; the median and the third per-
centile on the quadratic mean diameter (respective-
ly RP

25
, RP

50
 and RP

75
). Sghaier et al. (2016) took 

also into account the logarithmic transformation of 
the quotient of the first percentile; the median and 
the third percentile (respectively LP

25
, LP

50
, LP

75
) on 

the quadratic mean diameter. 

	 Simulation of the proportion of trees by 
class of diameter 
For each studied distribution and each estima-

tion method, the proportion of trees pertaining to 
a class of diameter whose limits would be l

1
 and l

2, 

equals the integral of the probability density func-
tion on such interval, which means the following:

𝑏̂𝑏 = [1
𝑛𝑛 ∑ 𝑥𝑥𝑖𝑖

𝑐𝑐𝑛𝑛
𝑖𝑖=1 ]

1
𝑐𝑐                                     (eq. 12) 

 

𝑚𝑚𝑘𝑘 = (1
𝑏𝑏)

𝑘𝑘/𝑐𝑐
Γ (1 + k

c)     (eq. 13) 

 

𝑚𝑚1 = 𝜇𝜇 = (1
𝑏𝑏)

1/𝑐𝑐
Γ (1 + 1

c)     (eq. 14) 

 

𝑚𝑚2 = 𝜇𝜇2 + 𝜎𝜎2 = (1
𝑏𝑏)

2/𝑐𝑐
Γ (1 + 2

c)    (eq. 15) 

 

𝜎𝜎2 = 𝑚𝑚2 − 𝜇𝜇2 = (1
𝑏𝑏)

2/𝑐𝑐
[Γ (1 + 2

c) − Γ2 (1 + 1
c)]  (eq. 16) 

 

 

𝜎𝜎2

𝜇𝜇2 = (Γ(1+2
𝑐𝑐)−Γ2(1+1

𝑐𝑐))
Γ2(1+1

𝑐𝑐)  ⟹  𝜎𝜎2 = 𝑑̅𝑑2

Γ2(1+1
𝑐𝑐) (Γ2(1 + 2

𝑐𝑐) − Γ2(1 + 1
𝑐𝑐))  (eq. 17) 

 

𝑏𝑏 = 𝑑̅𝑑
Γ(1+1

𝑐𝑐)     (eq. 18) 

 

 

∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑
𝐼𝐼2

𝐼𝐼1
 

 

 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 1
𝑛𝑛 ∑ (𝑌𝑌𝑖𝑖 − 𝑌̂𝑌𝑖𝑖)𝑛𝑛

𝑖𝑖=1       (eq. 19) 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑀𝑀𝑀𝑀𝑀𝑀) = 1
𝑛𝑛 ∑ |𝑌𝑌𝑖𝑖 − 𝑌̂𝑌𝑖𝑖|𝑛𝑛

𝑖𝑖=1    (eq. 20) 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) = √∑ (𝑌𝑌𝑖𝑖−𝑌̂𝑌𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛−𝑝𝑝   (eq. 21) 

 

𝐸𝐸𝐸𝐸 = ∑ |𝑌𝑌𝑖𝑖 − 𝑌̂𝑌𝑖𝑖|𝑘𝑘
𝑖𝑖=1        (eq. 22) 

 

𝑣𝑣 = 42.093 − 7.323𝑑𝑑 + 0.612𝑑𝑑2      (eq. 23) 

Such proportion can be represented by the area 

beneath the curve: y = f(x) delineated by two per-
pendicular lines to the abscissa axis, elevated to the 
inferior and superior limits of the class.

To determine the number of trees per class, the 
area beneath the density curve was divided, by verti-
cal rows, into n parts of constant area which equals 
1/n with n representing the number of trees in a plot. 
Each elementary area corresponds to a given tree. 
The continuous theoretical distribution of diameters 
was then replaced by a custered distribution with a 
constant class interval of 1 cm. This allows estima-
tion of the total number of trees for each diameter 
class.

	 Comparison criteria
The goodness of fit test can be used at different 

steps of the distribution modeling. During estima-
tion of parameters, it is necessary to test the con-
cordance between the theoretical and the observed 
distributions, in order to have an idea on the capaci-
ty of the chosen distribution to represent the type of 
stand concerned by the model.

Use of conventional “Goodness-of-fit” tests poses 
some problems. The Kolmogorov and Smirnov (K-S)  
test seeks the highest distance between empirical 
and cumulated distribution functions. This test ap-
plies only in the case of continuous data and its use 
for discrete data is valid only with a modified ver-
sion (Lafond 2010).  

Despite its drawback, use of the K-S test showed 
significant efficiency in comparison of six adjust-
ment methods by Liu et al. (2009) and a perfect 
concordance with the error index implemented (i.e. 
Reynolds error index).

The Chi-square Pearson test compares the pre-
dicted and observed numbers for each class of di-
ameter. It has the advantage of suitability to discrete 
data but it is sensitive to class definition, which 
has a strong influence on the test results. Its use 
often requires pooling of extreme classes in the 
case of insufficient observations (Dagnelie 1973).  
Similarly, the Chi-square test has the disadvantage 
of testing equality of distributions what is probably 
much strict in the case of models’ evaluation (Lafond 
2010). Therefore, it would be more practical to use 
Chi-square value as a measure of distance between 
distributions.

Finally, three numerical criteria and graphs of re-
siduals (difference between observed and estimated 
numbers of trees per class of diameter) were used 
(19, 20 and 21):

𝑏̂𝑏 = [1
𝑛𝑛 ∑ 𝑥𝑥𝑖𝑖

𝑐𝑐𝑛𝑛
𝑖𝑖=1 ]

1
𝑐𝑐                                     (eq. 12) 

 

𝑚𝑚𝑘𝑘 = (1
𝑏𝑏)

𝑘𝑘/𝑐𝑐
Γ (1 + k

c)     (eq. 13) 

 

𝑚𝑚1 = 𝜇𝜇 = (1
𝑏𝑏)

1/𝑐𝑐
Γ (1 + 1

c)     (eq. 14) 

 

𝑚𝑚2 = 𝜇𝜇2 + 𝜎𝜎2 = (1
𝑏𝑏)

2/𝑐𝑐
Γ (1 + 2

c)    (eq. 15) 

 

𝜎𝜎2 = 𝑚𝑚2 − 𝜇𝜇2 = (1
𝑏𝑏)

2/𝑐𝑐
[Γ (1 + 2

c) − Γ2 (1 + 1
c)]  (eq. 16) 

 

 

𝜎𝜎2

𝜇𝜇2 = (Γ(1+2
𝑐𝑐)−Γ2(1+1

𝑐𝑐))
Γ2(1+1

𝑐𝑐)  ⟹  𝜎𝜎2 = 𝑑̅𝑑2

Γ2(1+1
𝑐𝑐) (Γ2(1 + 2

𝑐𝑐) − Γ2(1 + 1
𝑐𝑐))  (eq. 17) 

 

𝑏𝑏 = 𝑑̅𝑑
Γ(1+1

𝑐𝑐)     (eq. 18) 

 

 

∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑
𝐼𝐼2

𝐼𝐼1
 

 

 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 1
𝑛𝑛 ∑ (𝑌𝑌𝑖𝑖 − 𝑌̂𝑌𝑖𝑖)𝑛𝑛

𝑖𝑖=1       (eq. 19) 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑀𝑀𝑀𝑀𝑀𝑀) = 1
𝑛𝑛 ∑ |𝑌𝑌𝑖𝑖 − 𝑌̂𝑌𝑖𝑖|𝑛𝑛

𝑖𝑖=1    (eq. 20) 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) = √∑ (𝑌𝑌𝑖𝑖−𝑌̂𝑌𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛−𝑝𝑝   (eq. 21) 

 

𝐸𝐸𝐸𝐸 = ∑ |𝑌𝑌𝑖𝑖 − 𝑌̂𝑌𝑖𝑖|𝑘𝑘
𝑖𝑖=1        (eq. 22) 

 

𝑣𝑣 = 42.093 − 7.323𝑑𝑑 + 0.612𝑑𝑑2      (eq. 23) 

𝑏̂𝑏 = [1
𝑛𝑛 ∑ 𝑥𝑥𝑖𝑖

𝑐𝑐𝑛𝑛
𝑖𝑖=1 ]

1
𝑐𝑐                                     (eq. 12) 

 

𝑚𝑚𝑘𝑘 = (1
𝑏𝑏)

𝑘𝑘/𝑐𝑐
Γ (1 + k

c)     (eq. 13) 

 

𝑚𝑚1 = 𝜇𝜇 = (1
𝑏𝑏)

1/𝑐𝑐
Γ (1 + 1

c)     (eq. 14) 

 

𝑚𝑚2 = 𝜇𝜇2 + 𝜎𝜎2 = (1
𝑏𝑏)

2/𝑐𝑐
Γ (1 + 2

c)    (eq. 15) 

 

𝜎𝜎2 = 𝑚𝑚2 − 𝜇𝜇2 = (1
𝑏𝑏)

2/𝑐𝑐
[Γ (1 + 2

c) − Γ2 (1 + 1
c)]  (eq. 16) 

 

 

𝜎𝜎2

𝜇𝜇2 = (Γ(1+2
𝑐𝑐)−Γ2(1+1

𝑐𝑐))
Γ2(1+1

𝑐𝑐)  ⟹  𝜎𝜎2 = 𝑑̅𝑑2

Γ2(1+1
𝑐𝑐) (Γ2(1 + 2

𝑐𝑐) − Γ2(1 + 1
𝑐𝑐))  (eq. 17) 

 

𝑏𝑏 = 𝑑̅𝑑
Γ(1+1

𝑐𝑐)     (eq. 18) 

 

 

∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑
𝐼𝐼2

𝐼𝐼1
 

 

 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 1
𝑛𝑛 ∑ (𝑌𝑌𝑖𝑖 − 𝑌̂𝑌𝑖𝑖)𝑛𝑛

𝑖𝑖=1       (eq. 19) 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑀𝑀𝑀𝑀𝑀𝑀) = 1
𝑛𝑛 ∑ |𝑌𝑌𝑖𝑖 − 𝑌̂𝑌𝑖𝑖|𝑛𝑛

𝑖𝑖=1    (eq. 20) 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) = √∑ (𝑌𝑌𝑖𝑖−𝑌̂𝑌𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛−𝑝𝑝   (eq. 21) 

 

𝐸𝐸𝐸𝐸 = ∑ |𝑌𝑌𝑖𝑖 − 𝑌̂𝑌𝑖𝑖|𝑘𝑘
𝑖𝑖=1        (eq. 22) 

 

𝑣𝑣 = 42.093 − 7.323𝑑𝑑 + 0.612𝑑𝑑2      (eq. 23) 

                     (eq. 19)

𝑏̂𝑏 = [1
𝑛𝑛 ∑ 𝑥𝑥𝑖𝑖

𝑐𝑐𝑛𝑛
𝑖𝑖=1 ]

1
𝑐𝑐                                     (eq. 12) 

 

𝑚𝑚𝑘𝑘 = (1
𝑏𝑏)

𝑘𝑘/𝑐𝑐
Γ (1 + k

c)     (eq. 13) 

 

𝑚𝑚1 = 𝜇𝜇 = (1
𝑏𝑏)

1/𝑐𝑐
Γ (1 + 1

c)     (eq. 14) 

 

𝑚𝑚2 = 𝜇𝜇2 + 𝜎𝜎2 = (1
𝑏𝑏)

2/𝑐𝑐
Γ (1 + 2

c)    (eq. 15) 

 

𝜎𝜎2 = 𝑚𝑚2 − 𝜇𝜇2 = (1
𝑏𝑏)

2/𝑐𝑐
[Γ (1 + 2

c) − Γ2 (1 + 1
c)]  (eq. 16) 

 

 

𝜎𝜎2

𝜇𝜇2 = (Γ(1+2
𝑐𝑐)−Γ2(1+1

𝑐𝑐))
Γ2(1+1

𝑐𝑐)  ⟹  𝜎𝜎2 = 𝑑̅𝑑2

Γ2(1+1
𝑐𝑐) (Γ2(1 + 2

𝑐𝑐) − Γ2(1 + 1
𝑐𝑐))  (eq. 17) 

 

𝑏𝑏 = 𝑑̅𝑑
Γ(1+1

𝑐𝑐)     (eq. 18) 

 

 

∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑
𝐼𝐼2

𝐼𝐼1
 

 

 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 1
𝑛𝑛 ∑ (𝑌𝑌𝑖𝑖 − 𝑌̂𝑌𝑖𝑖)𝑛𝑛

𝑖𝑖=1       (eq. 19) 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (𝑀𝑀𝑀𝑀𝑀𝑀) = 1
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Where Y
i
 and Ŷ

i
 represent respectively the ob-

served and the estimated numbers of stems per 
class of diameter and per plot; Ȳ the mean number 
of stems par class of diameter for all plots; p the 
number of parameters in the equation of the studied 
distribution and n the total number of classes of di-
ameter for all plots.

	 Reynolds index in %  
Reynolds index (22) (Reynolds et al. 1988) con-

sists in summing, for the k classes of diameter of 
each plot, the absolute difference between predicted 
and observed numbers:
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In such index, we can multiply the absolute dif-
ference between the observed and the estimated 
number for each class of diameter by the corre-
sponding volume, using a one entry volume table 
(23) built with 340 cubed stems of the same plots 
(Bentouati 2005).
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with R2
aj = 0.9441 and residual standard deviation 

(σ̂
r
 = 109.782 dm3).
Where the volume v is expressed in dm3 and the 

diameter d corresponds to the centre of diameter 
class interval. That way, Reynold’s index will take 
the following shape (24):
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The same index can be expressed in percent of 
plot total volume (Lejeune 1994, Sghaier et al. 2016) 
as following (25):
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The later index (EI’) expresses the percentage 
of error on the volume for each distribution and for 
each of the 230 studied plots.

	 Normality of residuals
Normality of error distribution was examined 

by the Ryan-Joiner normality test (Ryan and Joiner 
1976) and the plot of normal quantiles (QQ-probabil-
ity plots). The Ryan-Joiner test is a simple alterna-
tive to the Shapiro-Wilk normality test used most of-
ten in statistical softwares. The principle of this test 
is based on calculation of the correlation coefficient 
between residuals (e

i
 = Y

i
 – Ŷ

i
), ranked in ascending 

order, and normal scores or normal quantiles (zi), 
with s

2
 as the variance of these residuals (26):
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Normal scores and normal quantiles (z
i
) were 

calculated as following (27):
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Where Φ-1(z) is the inverse of the cumulative 
distribution function of the reduced normal distri-
bution.

A value ρ
obs

 close to 1 indicates that the distri-
bution of residuals can be considered as normal.  
Normality of residuals must be rejected at a confi-
dence level of (1-α) when ρ̂

obs
< ρα. Values of ρα 

are 
read on a table as a function of the number of obser-
vations n (Looney and Gulledge 1985). By providing 
an idea on the linearity of the relationship, the plot 
of the zi and ei constitutes a first step of this test.

Results

	 Parameter estimation 
It appears from Table 2 that the two - Weibull 

distribution estimation methods provided similar 
results. Regarding deviation, evaluated by the coef-
ficient of variation, it was low and did not exceed 
37% for the parameters of the normal and Weibull 
distributions, while such coefficient was high for 
the Beta distribution parameters, particularly the 

Table 2 - Descriptive statistics for the estimated parameters of the three studied distributions.

Distribution Method Parameter Mean Minimum Maximum CV%

Weibull ML b 34.348 10.898 67.243 34.46

c 3.526 1.470 7.606 32.77

MoM b 34.318 10.872 67.552 34.58

c 3.487 1.377 8.215 33.77

Beta - c 0.000089 1.36x10-24 0.0047 527.81

α 2.516 -0.278 10.668 66.14

λ 1.529 -0.306 6.353 72.46

Normal - m ̂ 30.90 9.87 62.94 35.14

σ ̂ 10.422 2.638 19.374 36.14

ML: the maximum likelihood method. MoM: the method of moments.
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scale parameter c which displayed a coefficient of 
variation of about 528 %. This result may be motivat-
ed by extreme low values of magnitude. The great 
variability observed comes from the fact that the 
latter is calculated as a function of the other two 
parameters a and l of the Beta distribution using 
the equation (8).

	 Parameter recovery 
Table 3 provides the Pearson correlation values 

between the estimated parameters of the different 
distributions and stand characteristics, used as ex-
planatory variables (see methodology).

The calculated correlations showed a perfect 
agreement between the two estimation methods of 
Weibull distribution regarding the degree of the re-
lationship with stand variables. However, the two 

parameters b and c did not show the same result 
with respect to the same stand characteristics since 
all the correlations with the parameter b were sig-
nificant while in the case of the parameter c, an 
absence of correlation was noticed with density; 
LP

75
 and average and dominant heights. The best 

correlations between parameters of the studied 
distributions and stand characteristics, concern the 
average diameter (d̄) for the parameter b and the 
first percentile (P

25
) for the parameter c of the Wei-

bull distribution according to the two estimation 
methods; the third percentile (P

75
) for the stand-

ard deviation (σ̂) of the normal distribution and 
the parameter l of the beta distribution, and final-
ly the logarithm of the ratio of P

25
 to the quadratic 

mean diameter (d
g
) for the parameter l of the same  

distribution.

Table 3 - Correlation between the estimated parameters and the means of plot characteristics.

Variable
Normal Weibull (ML) Weibull (MoM) Beta

σ̂ b c b c c α λ
Age 0.470*** 0.691*** 0.221*** 0.691*** 0.209** 0.012 0.117 -0.190**
N -0.551*** -0.683*** -0.103 -0.682*** -0.056 0.020 0.118 0.446***
Hd 0.574*** 0.678*** 0.077 0.677*** 0.053 0.143* -0.062 -0.322***
Hm 0.558*** 0.662*** 0.097 0.662*** 0.066 0.154* -0.061 -0.365***
dg 0.556*** 0.838*** 0.285*** 0.838*** 0.249*** -0.023 0.085 -0.361***
d̄ 0.577*** 0.988*** 0.423*** 0.988*** 0.377*** -0.065 0.179** -0.384***
P25 0.325*** 0.932*** 0.630*** 0.934*** 0.594*** -0.203** 0.411*** -0.221***
P50 0.524*** 0.978*** 0.472*** 0.979*** 0.421*** -0.112 0.215*** -0.372***
P75 0.711*** 0.978*** 0.276*** 0.977*** 0.223*** 0.041 0.015 -0.492***
RP25 -0.175** 0.337*** 0.545*** 0.340*** 0.536*** -0.303*** 0.463*** 0.090
RP50 0.034 0.279*** 0.265*** 0.280*** 0.241*** -0.161* 0.160* -0.083
RP75 0.240*** 0.189** -0.046 0.189** -0.071 0.078 -0.136* -0.216***
LP25 -0.242*** 0.322*** 0.584*** 0.326*** 0.578*** -0.398*** 0.514*** 0.150*
LP50 -0.005 0.295*** 0.319*** 0.297*** 0.294*** -0.204** 0.209** -0.060
LP75 0.246*** 0.198** -0.041 0.197** -0.069 0.100 -0.145* -0.239***
Ld 0.035 0.222*** 0.200** 0.223*** 0.183** -0.089 0.123 -0.054

*** Significant: p<0.001; ** Significant: p<0.01; * Significant: p<0.05; Age (years); N: density (trees ha-1); Hd: dominant height (m); Hm: mean 
height (m); dg: quadratic mean diameter (cm); d̄: arithmetic mean diameter (cm); P25: 25% percentiles (cm); P50: 50% percentiles (cm);  
P75: 75% percentiles (cm); RP25: (P25/dg); RP50: (P50/dg); RP75: (P75/dg); LP25: ln (P25/dg); LP50: ln (P50/dg); LP75: ln (P75/dg); Ld = ln(d̄⁄dg );  
ln: Neperian logarithm.

Table 4 shows values, significance and accura-
cy of the parameters of the different models which 
link the estimated parameters, of the studied distri-
butions, to the stand characteristics. For the Beta 
distribution, only the two parameters a and l were 
related to plot characteristics. The parameter c is 
a scale parameter that must ensure that the area 
under the curve of the probability density function 
equals the unit. The calculation of this parameter, 
function of the values of the two parameters a and 
l, being carried out by program by calling gamma 
function (8).

The regressions presented in the Table 4 were 
fitted using the Ordinary Least Squares (OLS) meth-

od. Each equation was fitted on its own and inde-
pendently of the other equations. Only the variables 
which show the highest correlations with the de-
pendent variables of the different functions tested 
(Tab. 3) were used as independent variables. The 
regressions presented in the Table 4 were fitted 
using the Ordinary Least Squares (OLS) method.  
Each equation was fitted on its own and inde-
pendently of the other equations. Only the variables 
which show the highest correlations with the de-
pendent variables of the different functions tested 
(Tab. 3) were used as independent variables.

No variable selection method was used given the 
small number of independent variables retained for 
the adjustment (the only variables showing strong 
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correlations with the dependent variables: param-
eters of the rod distribution functions tested). For 
each equation, different linear and non-linear rela-
tionships were fitted and compared. The selected 
equations are those in which all the regression co-
efficients are significant at 5% error, with a maxi-
mum R2 and a minimum residual standard deviation 
(RMSE).

Since the two percentiles (P
25

 and P
75

) were used 
as explanatory variables to predict some parameters 

of the studied distributions, a relationship between 
such distributions and the mean diameter of the 
stand was fitted for each of them (Tab. 4). On the 
other hand, since the mean diameter of the stand 
has also been selected as an explanatory variable 
for predicting some parameters and in order to al-
low use of these distributions for yield tables, which 
generally provide only the mean square diameter, 
a relationship between the mean diameter and the 
mean square diameter was established (Tab. 4). 

Table 4 - Relationship between the estimated parameters of the three studied distributions and plot characteristics.

Distrib. Method Equations

Parameters

R2 σ̂ra1 a2 a3

Weibull

ML
b = a1+ a2d̄ 1.080** 1.077*** - 0.975 1.862

c = a1+ a2P25
2 2.622*** 0.00138*** - 0.447 0.861

MoM
b = a1+ a2d̄ 0.958** 1.080*** - 0.976 1.854

c = a1+ a2P25
2 2.609*** 0.00134*** - 0.406 0.910

Beta MoM
α = a1+ a2 (P25 ⁄dg ) + a3 (P25 ⁄dg )2 -4.147*** 14.273*** -6.387*** 0.320 1.379

λ = a1 P75
a2 36.311*** -0.913*** - 0.338 0.904

Normal -
d̄ = d̄ - - - - -

σ̂ = a1 P75
a2 0.859*** 0.692*** - 0.526 2.599

P25 P25= a1+ a2d̄ -4.044*** 0.889*** - 0.879 3.581

P75 P75= a1+ a2d̄ 2.463*** 1.140*** - 0.924 3.569

d̄ d̄ = dg-e (a1 Hd) 0.0694*** - - 0.663 6.303

*** Significant: p<0.001; ** Significant: p<0.01; R2: coefficient of determination; σ̂ r : residual standard deviation; ln : neperian logarithm.

	 Comparison of the studied distributions 
Table 5 shows results related to various compar-

ison criteria of the studied distributions for the two 
methods of parameter calculation, i.e. the parame-
ter estimation method and the parameter recovery 
method.

Parameter estimation method 
Table 5 shows values of the different comparison 

criteria which are very close to each other despite a 
slight superiority of the Weibull distribution, which 

uses the method of moments as a parameter estima-
tion method. 

Figure S1 (in supplementary material) shows 
the distribution of residuals according to stem size; 
the normality test of residuals and the projection of 
residuals according to the normal scores for each 
of the studied distribution. From these graphs, it 
appears that residuals of all studied distributions 
are randomly distributed around the null value as a 
function of diameter and have distributions which 
do not deviate too much from a normal one, with  
ρ

obs 
values of 0.99 vs. a theoretical value of the order 

of unit (ρ
0.05

 = 0.998).
Reynolds index (EI’) evolution as a function of 

plots’ mean diameter and mean density classes (Fig. 
2a and Fig. 2b respectively) shows that the Beta dis-
tribution is the least accurate one comparatively to 
the others. This trend applies for all diameter and 
density classes. The accuracy of the two other distri-
butions, i.e. the normal and the Weibull one with the 
two parameter estimation methods (ML and MoM), 
varied according to diameter and density classes: 
the two Weibull distributions were similar, while the 
normal distribution differed from the two Weibull 
ones by remarkably higher values of EI’ for the di-
ameter class of 20 cm and the density class of 600 
stems/ha and by lower values for the two last diame-
ter classes (50 and 60 cm). 

Table 5 - Bias, mean absolute error (MAE), mean square error 
(RMSE), adjusted coefficient of determination R 2adj and Reynolds 
index in percent (EI’) for the three studied distributions and the 
two approaches of distribution modeling.    

Method Criteria
Weibull

Beta NormalML MoM

Parameter 
estimation 

Bias 0 0 0 0
MAE 1.42 1.40 1.41 1.46
RMSE 1.92 1.89 1.91 1.97
R 2adj 0.746 0.754 0.751 0.734
EI’ 36.96 37.07 39.90 37.55

Parameter 
recovery 

Biais 0 0 0 0
MAE 1.90 1.89 2.46 1.90
RMSE 2.687 2.670 3.639 2.608
R 2adj 0.505 0.511 0.091 0.5333
EI’ 48.99 48.69 62.68 48.57
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Parameter recovery method 
This method showed (Tab. 5) that the Beta dis-

tribution differed by the highest values of the mean 
absolute errors (MAE), the root means square errors 
(RMSE), the Reynolds index (EI’) and the lowest val-
ue of the adjusted coefficient of determination (R 2

aj
). 

Such distribution is the least accurate one regard-
ing prediction of the number of trees per diameter 
class. Values of the different comparison criteria for 
the three other distributions, namely the normal dis-
tribution and Weibull ones with the two estimation 
methods, are of the same order of magnitude even 
though they slightly favor, from a precision point of 
view, the normal distribution and the Weibull distri-
bution estimated with the method of moments.

Figure S2 (in supplementary material) on the 
homoscedasticity and normality of residuals which 
resulted from the studied distributions, in the case 
of the parameter recovery method, shows that, in 
general, the distribution of residuals deviated much 
more from the normal distribution comparatively 
to the distribution obtained with the parameter es-
timation method. Indeed, values of ρ

obs
 related to 

Ryan-Joiner normality test ranged from 0.95, for the 

Figure 2 - Mean values of Reynolds index per class of mean 
diameter (a) and mean density (b) (method of parameter 
estimation).

Beta distribution, to about 0.98 for the normal one. 
Those related to the Weibull distribution, with the 
two estimation methods, occupied an intermediate 
position with ρ

obs 
of 0.97. Regarding homogenei-

ty of residuals distribution, around the zero value, 
along the horizontal axis, corresponding to diameter 
classes, only residuals from the Beta distribution re-
vealed imbalanced for stem diameters lower than 20 
cm, indicating an overestimation of the number of 
trees for small diameter classes.

Comparison of mean values of Reynolds Index 
(EI’) by diameter classes (Fig. 3a) and density class-
es (Fig. 3b), in the case of parameter recovery meth-
od, confirmed results obtained in Table 5. 

Figure 3 - Mean values of Reynolds index per class of mean 
diameter (a) and mean density (b) (method of parameter recovery).

Indeed, these two graphs show the accuracy dif-
ference between the Beta distribution and the oth-
er studied ones. Mean values of the Reynolds index 
obtained by the Beta distribution exceeded those 
obtained by the other distributions for all age class-
es and for different diameter classes except that of 
60 cm for which the Beta distribution revealed more 
accurate than the normal one. The two distributions 
derived from the Weibull (ML and MoM) provided, 
in the case of parameter estimation method, values 
that are very close to each other according to plot 
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distribution by diameter or density classes. In the 
case of parameter estimation method, the normal 
distribution is also different from Weibull ones for 
some diameter and density classes. Indeed, com-
paratively to the two Weibull distributions, despite 
a slight superiority for the diameter of 30 cm and the 
density class of 400 stems ha-1, the normal distribu-
tion offers less accurate estimates, particularly for 
the first; the second and the last two diameter class-
es (i.e.10, 50 and 60 cm) and also for the two last 
density classes (800 and 1,000 trees ha-1). 

Three distributions shapes were revealed: sym-

metrical; dissymmetrical with left asymmetry and 
reverse I or J-shaped distributions. Figure 4 shows, 
for three representative plots of the three observed 
distribution types, the observed and the simulated 
numbers of trees by class of diameter according 
to the two methods of parameter calculation, i.e. 
the parameter estimation method (Fig. 4a) and the 
parameter recovery method (Fig. 4b). The graphs 
(Fig. 4) provide a further insight into the quality of 
tree size estimation by class of size using the studied 
distributions for each of the two parameter calcula-
tion method.

Figure 4 - Distribution of the number of stems per class of diameter, Observed and estimated numbers with the four studied functions 
basing on the method of parameter estimation (a) and the method of parameter recovery (b) for three characteristic plots (plot1: a 
symmetrical bell distribution; plot 14: a bell shaped left skewed distribution and plot 40: a reverse J distribution-shape).

Discussion

Results of the correlations between parameters 
of the theoretical distributions and those of the 
population, confirmed the flexibility of the Weibull 
distribution and its adaptability to various kinds of 

data (Rinne 2009), but are not in perfect agreement 
with those of Sghaier et al. (2016) on Tetraclinis ar-
ticulata (Vahl) Mast. from Tunisia. The correlation 
coefficients calculated in the present study are low-
er than those found by Sghaier et al. (2016). On the 
other hand, the absence of correlation is not neces-
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sarily observed on the same stand variables as these 
authors. Considering only the Weibull distribution, 
results presently obtained by the two methods (ML 
and MoM) are comparable to those of Gorgoso et al. 
(2007), who used a nonlinear regression as an esti-
mation method, if we except correlations with LP

25
 

and Ld for the parameter b and N, H
dom

 and H
m
 for the 

parameter c. The same authors obtained on Betula 
alba L., in Spain, models explaining the Weibull pa-
rameters b and c with the same population variables 
(respectively d

g
 and P

25
, in addition to N and H

dom
) 

and with comparable coefficients of determination. 
Contrary to our results where the standard deviation 
is predicted by P

75
, the best explanatory variable of 

this parameter, in the case of the normal distribu-
tion, is dg with a lower R² (0.526) according to Sghai-
er et al. (2016). Exceptionally high R²

adj
 (up to 0.99) 

are obtained for models predicting the Weibull b and 
c parameters (Sghaier et al. 2016). With respect to 
Weibull distribution, multiple regression models es-
tablished by Maltamo et al. (1995) on Pinus sylves-
tris and Picea abies (L.) Karst., in Finland, revealed 
different results regarding the explanatory parame-
ters inputted and the quality of the adjustments with 
less explicit models (0.18 <R² <0,32). On the other 
hand, more convincing results are obtained on the 
parameters of the Beta distribution. Comparisons 
made in the present study suggest the Weibull distri-
bution as the most suitable. Although a large differ-
ence in error index is not observed, the method of 
moments seems to be the most recommended since 
it has shown satisfactory results regardless of the 
distribution shape. For Lejeune (1994), the normal 
distribution provided results as satisfactory as the 
Weibull distribution, despite a lower flexibility. For 
the Weibull distribution, the parameter estimation 
method by the non-centered moments proved to be 
the best, while there was not a large difference in 
adequacy between the Beta and the Weibull distribu-
tions estimated by the maximum likelihood method 
(Maltamo et al. 1995). Although most studies (Zhang 
et al. 2003 and references therein) indicate that the 
best adjustments are obtained by the maximum like-
lihood method, this one highly underestimates the 
small diameter frequencies what considerably reduc-
es the quality of the obtained model. These findings 
corroborate those of Gorgoso et al. (2007). Regard-
ing the method of moments, which also suffers from 
this disadvantage, it is cited among the most precise 
estimation methods (Lejeune 1994, Lei 2008, Liu et 
al. 2004, Liu et al. 2009). The weakness of this meth-

Table 6 - Values of Weibull PDF parameters at 40, 70, 100 and 120 years of age for stands.    

Age
Stand variables  Estimated variables  Parameters Weibull PDF

 Hd  Hm  N  Cg  dg  d̄  P25  b  c 
40 14.72 12.97 427.25 93.07 29.64 26.86 27.92 29.97 2.65
70 19.50 17.18 260.25 140.78 44.83 41.31 40.77 45.57 2.66
100 22.59 19.90 192.90 177.46 56.52 51.72 50.02 56.82 2.68
120 24.06 21.20 166.55 197.37 62.86 57.79 55.42 63.38 2.68

od consists in its difficulty to model the multimodal 
distributions. Nevertheless, other much less used 
procedures have shown satisfactory results (see for 
example the nonlinear regression method in Gorgo-
so et al. 2007). In agreement with these authors, re-
sults of the present study showed that establishment 
of a stem distribution model by parameter recovery 
method leads to inaccuracies comparatively to pa-
rameter estimation method. Lejeune (1994) attribut-
ed this loss of information to the unclear data from 
which the prediction equations are constructed. The 
author also considered that the step of parameter es-
timation constitutes the most important source of in-
accuracy in the distribution modeling whatever the 
theoretical distribution adopted. This observation is 
due to the close relationship between the precision 
of this estimation and the number of individuals in 
different samples.

Results show strong correlations between pa-
rameters of the theoretical distributions and some 
population variables such as arithmetic or quadratic 
mean diameter and dominant height. For the same 
species, Palahi et al. (2006) showed that the quatrat-
ic mean diameter and the number of trees per hec-
tare are the best predictors for the two parameters 
of the Weibull distribution (b and c, respectively). 
The diameter distribution models can be used in-
dependently by measuring a number of stand varia-
bles, or together with the yield table, which provides 
information that allows to predict the parameters of 
the distribution employed (work not yet published). 
Table 6 presents the predicted Weibull PDF (prob-
ability density function) parameters for different 
ages of the best site quality (H

d
 = 19.5 m at 70 years 

of age). Figure 5 shows the curves associated with 
these distributions.
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Figure 5 - Curves of diametric distribution at 40, 70, 60, 100 and 
120 years by diameter (DBH, cm) for stands.
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Conclusion

The present study aimed at building a model of 
diameter structure for Aleppo pine stands in the Au-
res (Algeria). Results indicate that the Weibull dis-
tribution is more suitable to this type of data with 
the method of moments as the best parameter esti-
mation method. This study show that the parameter 
estimation method is more accurate compared to 
parameter recovery method. The parameter pre-
diction models developed enable one to predict the 
diameter distribution for a given stand of P. halep-
ensis using rather limited information (age, H

d
, H

m
, 

d
g
, d̄...). This model can be used to predict stand 

development under different management parame-
ters. This information is crucial for finding optimal 
forest management schedules for different manage-
ment objectives and stand conditions (Palahi et al. 
2006).

Establishment of a structural model for the Au-
res Aleppo pine forests is an important and com-
plementary tool to the previous investigations 
on silviculture and productivity of the species in 
the same forests (Bentouati 2005). Such tool may 
also help foresters to have an accurate idea on the 
woody material in a climato-ecological context re-
quiring caution in silvicultural practices in order to 
maintain the balance and the sustainability of forest 
stands. These results are also useful in establishing 
a yield table by diameter classes which may be used 
as a management tool of Aleppo pine forests in the  
Aures which are important both ecologically and 
economically.

References 

Abd Kudus K., Ahmad M-I., Lapongan J. 1999 - 
Nonlinear regression approach to estimating 
Johnson SB parameters for diameter data. Ca-
nadian Journal of Forest Research 29: 310-314.

Amri I., Hamrouni I., Hanana M., Gargouri S., Fez-
zani T., Jamoussi B. 2013 - Chemical composi-
tion, physico-chemical properties, antifungal 
and herbicidal activities of Pinus halepensis 
Miller essential oils. Biological Agriculture & 
Horticulture 29 (2): 91-106. doi.org/10.1080/014
48765.2013.764486

Bailey R.L., Dell T.R. 1973 - Quantifying diameter 
distributions with the Weibull function. Forest 
Science 19: 97-104.

Bentouati A. 2005 - Croissance, productivité et 
aménagement des forêts de pin d’Alep (Pinus 
halepensis Mill.) du massif de Ouled-Yakoub 
(Khenchela-Aures). Thèse de doctorat d’Etat en 
Sciences Agronomiques, Université Hadj Lakh-
dar, Batna, Algérie. 119 p. + annexes.

Bentouati A., Bariteau M. 2005 - Une sylviculture 
pour le pin d’Alep des Aures (Algérie). Revue 

forêt méditerranéenne XXVII 4: 311-321.
BNEF 1984 - Plan d’aménagement de la zone des 

Ouled Yakoub et des Béni-Oudjana (40,000 
ha). Ministère de l’Hydraulique de l’Environne-
ment et des Forêts. Algérie. 62 p.+ annexes.

Cao Q.V., McCarty S.M. 2006 - News methods for 
estimating parameters of Weibull functions to 
characterize future diameter distributions in 
forest stands. In: Proceedings of the “13th Bi-
ennial Southern Silvicultural Research Confer-
ence”. General Technical Report SRS-92, South-
ern Research Station, USDA Forest Service, 
Asheville, NC, USA: 338-340.

Choury Z., Shestakova T.A., Himrane H., Touchan 
R., Kherchouche D., Camarero J.J., Voltas V. 2017 
- Quarantining the Sahara desert: growth and 
water-use efficiency of Aleppo pine in the Alge-
rian Green Barrier. European Journal of For-
est Research 136(1):139-152. doi.org/10.1007/
s10342-016-1014-3

Dagnelie P. 1973 - Théories et méthodes statis-
tiques. Applications agronomiques. Presses 
agronomiques de Gembloux, Belgique 1, 2ème 
édition. 377 p.

Dagnelie P., Rondeux J. 1971 - La répartition des 
arbres en catégories de grosseur: déciles de 
Jedlinski et distribution log-normale. Annals 
of Forest Science 28 (3): 289-296.  doi: 10.1051/
forest/19710303

Dagnelie P. 2013 - Statistique théorique et ap-
pliquée. Statistique descriptive et bases de l’in-
férence statistique. Tome 1, De Boeck, Brux-
elles. 517 p.

Dahlberg A., Thor G., Allmér J., Jonsell M., Jonsson 
M., Ranius T. 2011 - Modelled impact of Norway 
spruce logging residue extraction on biodiver-
sity in Sweden. Canadian Journal of Forest Re-
search 41: 1220–1232. doi.org/10.1139/x11-034

Djema A., Messaoudène M. 2009 - The Algerian for-
est: Current situation and prospects. In mod-
eling valuing and managing Mediterranean 
forest ecosystems for non timber goods and 
services. Palahi M., Birot Y., Bravo F., Goriz E. 
eds. EFI proceedings 57:17-27.

Duplat P., Perrotte G. 1981 - Inventaire et estima-
tion de l’accroissement des peuplements fores-
tiers. Ed. ONF-section technique. 432p.

Eerikainen K., Maltamo M. 2003 - A percentile 
based basal area diameter distribution model 
for predicting the stand development of Pinus 
kesiya plantations in Zambia and Zimbabwe. 
Forest Ecology and Management 172: 109-124.

Fonton H.N., Sagbo A.A.P. 2004 - Modélisation des 
distributions des paramètres dendrométriques 
d’une espèce ligneuse dominante en peuple-
ment naturel. Annals of Forest Science 61 (6): 
545-549. doi: 10.1051/forest:2004049

Gorgoso J.J., Álvarez González J.G., Rojo A., Gran-
das-Arias J.A. 2007 - Modelling diameter distri-



Annals of Silvicultural Research

Khellaf Rabhi, Abdallah Bentouati, Salima Bahri, Tahar Sghaier, Fazia Krouchi, Mathieu Fortin, Catherine Collet
Modeling diameter distribution of Aleppo pine (Pinus halepensis Mill.) natural forest in the Aures (Algeria) using the Weibull, 

Beta and Normal distributions with parameters depending on stand variables

175

butions of Betula alba L. stands in northwest 
Spain with the two-parameter Weibull func-
tion. Investigación Agraria: Sistemas y Recur-
sos Forestales 16 (2): 113-123.

Gorgoso J.J.,  Rojo A., Camara-Obregon A., Dieg-
uez-Aranda U. 2012 - Comparison of estimation 
methods for fitting Weibull, Johnson’s SB and 
beta functions to Pinus pinaster Aiton, Pinus 
radiata D. Donand  et Pinus sylvestris L. stands 
in northwest Spain. Forest Systems 21 (3): 446-
459. doi: 10.5424/fs/2012213-02736

Hudak D., Tiryakioglu M. 2009 - On estimating 
percentiles of the Weibull distribution by the 
linear regression method. Journal of Material 
Science 44:1959–1964. doi: 10.1007/s10853-009-
3306-1

Kadri N., Khettal B., Aid Y., Kherfellah S., Sobhi 
W., Barragan-Montero V. 2015 - Some physico-
chemical characteristics of Pinus (Pinus halep-
ensis Mill., Pinus pinea L., Pinus pinaster and 
Pinus canariensis) seeds from North Algeria, 
their lipid profiles and volatile contents. Food 
Chemistry 188: 184-192.  doi: 10.1016/j.food-
chem.2015.04.138 

Lafitte R. 1939 - Structure et relief de l’Aures (Al-
gérie). In: Bulletin de l’Association de géog-
raphes français 119 : 34-40. DOI : doi.org/10.3406/
bagf.1939.7028

Lafond V. 2010 - Evaluation d’un modèle de sim-
ulation de dynamique forestière en sapinière 
– pressière irrégulière de montagne. Rapport 
de Master 2, École nationale du génie rural, des 
eaux et des forêts, Nancy. 38 p. 

Lei Y. 2008 - Evaluation of three methods for es-
timating the Weibull distribution parameters 
of Chinese pine (Pinus tabulaeformis Carr.). 
Journal of Forest Science 54 (12): 566-571. doi: 
10.17221/68/2008-JFS

Lejeune P. 1994 - Construction d’un modèle de 
répartition des arbres par classes de grosseur 
pour les plantations d’épicéa commun (Picea 
abies L. Karst) en Ardenne belge. Annals of 
Forest Science 51 (1): 53-65. doi: 10.1051/for-
est:19940104

Liu C., Beaulieu J., Prégent G., Zhang S. Y. 2009 
- Applications and comparison of six meth-
ods for predicting parameters of the Wei-
bull function in unthinned Picea glauca 
(Moench) Voss. plantations. Scandinavian 
Journal of Forest Research 24 (1): 67-75. doi.
org/10.1080/02827580802644599

Liu C., Zhang S.Y., Lei Y., Newton P.F., Zhang L. 
2004 - Evaluation of three methods for pre-
dicting diameter distributions of black spruce 
(Picea mariana Mill.,Briton, Sterns & Poggen-
burg) plantations in central Canada. Canadian 
Journal of Forest Research 34: 2424-2432. doi.
org/10.5558/tfc80349-3

Looney S.W., Gulledge T.R. 1985 - Use of the cor-

relation coefficient with normal probability 
plots. The American Statistician 39 (1): 76-79. 
doi.org/10.2307/2683917 

Maltamo M., Puumalainen J., Paivinen R. 1995 - 
Comparison of beta and Weibull functions for 
modeling basal area diameter distribution in 
stands of Pinus sylvestris L. and Picea abies L. 
Karst. Scandinavian Journal of Forest Research 
10: 284–295. doi.org/10.1080/02827589509382895

Nahal I. 1962 - Le pin d’Alep, étude taxonomique, 
phytogéographique, écologique et sylvicole. An-
nales de l’école nationale des eaux et forêts et 
de la station de recherches et expériences 19 
(4) : 473-684.

Nanos N., Montero G. 2002 - Spatial prediction of 
diameter distributions models. Forest Ecolo-
gy and Management 161: 147-158. doi: 10.1016/
S0378-1127(01)00498-4

Palahí M., Pukkala T., Trasobares A. 2006 - Mod-
elling the diameter distribution of Pinus syl-
vestris, Pinus nigra and Pinus halepensis forest 
stands in Catalonia using the truncated Wei-
bull function Forestry. An International Journal 
of Forest Research 79 (5): 553–562. https://doi.
org/10.1093/forestry/cpl037

Quézel P. 1986 - Les pins du groupe « halepensis » 
: Ecologie, Végétation, Ecophysiologie. Options 
Méditerranéennes. Série Etude CIHEAM 86/1 : 
11-24.

Rabhi K., Messaoudène M., Fortin M., Collet C. 
2016 - Modélisation de la structure en di-
amètre des reboisements et des peuplements 
naturels de cèdre de l’Atlas (Cedrus atlan-
tica Manetti) du Djurdjura (Algérie). Re-
vue Forestière Française 68 (1): 43-52. doi.
org/10.4267/2042/61593

Reynolds M.R., Burk T.E., Huang W.C. 1988 - Good-
ness-of-fit tests and model selection proce-
dures for diameter distribution model. Forest 
Science 34: 373-399. doi:10.1093/FORESTSCI-
ENCE/34.2.373

Rinne H. 2009 - Weibull distribution, a handbook. 
CRC press, Justus-Liebig-university, Germany. 
782 p.

Rondeux J. 1993 - La mesure des arbres et des peu-
plements forestiers. Presses Agronomiques de 
Gembloux, Belgique. 521 p.

Saad H., Khoukh A., Ayed N., Charrier B., Charri-
er-El Bouhtoury F. 2014 - Characterization of 
Tunisian Aleppo pine tannins for a potential 
use in wood adhesive formulation. Industrial 
Crops and Products 61: 517-525. doi: 10.1016/j.
indcrop.2014.07.035

Sghaier T., Ammari Y.  2012 - Croissance et produc-
tion du pin d‘Alep (Pinus halepensis Mill.) en 
Tunisie. Ecologia Mediterranea 38 (1) : 39-57. 
doi : https://doi.org/10.3406/ecmed.2012.1325

Sghaier T., Palm R. 2002 - Répartition des arbres 
et des volumes par classes de grosseur dans les 



Annals of Silvicultural Research

Khellaf Rabhi, Abdallah Bentouati, Salima Bahri, Tahar Sghaier, Fazia Krouchi, Mathieu Fortin, Catherine Collet
Modeling diameter distribution of Aleppo pine (Pinus halepensis Mill.) natural forest in the Aures (Algeria) using the Weibull, 

Beta and Normal distributions with parameters depending on stand variables

176

peuplements de pin d’Alep (Pinus halepensis 
Mill.) en Tunisie. Annals of Forest Science 59 
3: 293-300. doi: 10.1051/forest:2002025

Sghaier T., Cañellas I., Calama R., Sánchez-González 
M. 2016 - Modelling diameter distribution of 
Tetraclinis articulata in Tunisia using normal 

and Weibull distributions with parameters de-
pending on stand variables. iForest 9: 702-709. 
doi: https://doi.org/10.3832/ifor1688-008

Vanclay J.K. 1994 - Modelling Forest Growth and 
Yield. Applications to Mixed Tropical Forests. 
CAB International edition. 329 p.


