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Abstract - Spatially-explicit information on forest composition provides valuable information to fulfil scientific, ecological and man-
agement objectives and to monitor multiple changes in forest ecosystems. The recently developed Sentinel-2 (S2) satellite imagery
holds great potential for improving the classification of forest types at medium-large scales due to the concurrent availability of mul-
tispectral bands with high spatial resolution and quick revisit time. In this study, we tested the ability of S2 for forest type mapping in
a Mediterranean environment. Three operational S2 images covering different phenological periods (winter, spring, summer) were
processed and analyzed. Ten 10 m and 20 m bands available from S2 and four vegetation indices (VIs) were used to evaluate the
ability of S2 to discriminate forest categories (conifer, broadleaved and mixed forests) and four forest types (beech forests; mixed
spruce-fir forests; chestnut forests; mixed oak forests). We found that a single S2 image acquired in summer cannot discriminate
neither the considered forest categories nor the forest types and therefore multitemporal images collected at different phenological
periods are required. The best configuration yielded an accuracy > 83% in all considered forest types. We conclude that S2 can
represent an effective option for repeated forest monitoring and mapping.

Keywords - Forest Classification; European Forest Types; Multispectral satellite imagery; Jeffries-Matusita (J-M) distance test;

Random Forest

Introduction

Classification of forest categories and types is
strongly required for addressing a wide range of
ecological questions related to the determination
of forest classes and/or successional stages (Lau-
rin et al., 2013), rate of afforestation/deforestation
(Hirose et al., 2016; Omruuzun et al., 2015), func-
tional composition (Laurin et al., 2016) and global
environmental changes (Trumbore et al., 2015). All
these kinds of application require very fine mapping
and monitoring of forest types, which have so far
been limited by the spectral, spatial and temporal
resolution available from current satellite open ac-
cess data (e.g., Landsat, MODIS).

Previous studies using satellite multispectral
sensors indicate that the visible and near-infrared
wavelength regions are important for forest clas-
sification (Immitzer et al., 2012; Moore and Bauer,
1990; Waser et al., 2014). However, very few stud-
ies using multispectral sensors have evaluated the
importance of red-edge bands for forest classifica-
tion (e.g., Adelabu et al., 2013). As alternative to
satellite remote sensing, unmanned aerial vehicles
have recently gained increasing attention to obtain
detailed information at local scale and at flexible
temporal resolution, but their large scale applica-

tions in forestry are still at an experimental stage
(Chianucci et al., 2016). Accurate discrimination of
forest types is also essential for sustainable forest
management and planning (Barbati et al., 2014), for
estimating carbon stock (Noguiera et al., 2005) and
for modelling the distribution of species and com-
munities (Foody et al., 2003). Therefore, there is an
increasing demand in both open access high quality
data and quick turnaround series from remote sens-
ing sensors for accurate mapping and monitoring of
forest environments. This is particularly relevant
for Mediterranean forests, which are characterized
by high level of complexity (e.g., large number of
species and variable canopy densities), which can
complicate the discrimination of forest types from
optical satellite imagery (Bajocco et al. 2013; Maselli
et al., 2009; Pignatti et al., 2009). For example, pre-
vious studies indicated that Mediterranean forest
types are often characterized by very high canopy
density (Leaf Area Index, LAI > 5 m? m? Chianucci,
2016; Chianucci et al., 2014; Chianucci and Cutini,
2013; Cinnirella et al., 2002; Thimonier et al., 2010),
which can limit the retrieval of optical informa-
tion from satellite data. Indeed, optical measures
often saturate at leaf area index values of about 5
(Thenkabail et al., 2000), while vegetation indices
using near-infrared (NIR) bands may saturate at
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lower values (Davi et al., 2006; Turner et al., 1999).
In addition, Mediterranean forests exhibits different
phenological patterns according to forest categories
and types, and therefore accurate temporal resolu-
tion data are strongly required for discriminating
different forest types in these environments.

The recent Sentinel-2 (S2) mission, which started
June 2015, holds great potential for the fine classifi-
cation and monitoring of forest types on large scales
(Baillarin et al., 2012). Even if S2 does not carry on
ahyperspectral sensor, it was specifically conceived
for vegetation sensing purposes and offers innova-
tive features for environmental remote sensing (Im-
mitzer et al., 2016). S2 can combine high spatial reso-
lution, wide coverage and quick revisit time (about 5
days), which offers unprecedented opportunities for
fine discrimination of land-cover classes. S2 carries
a multispectral sensor with 13 bands, from 0.443 to
2.190 pm. The visible R, G, B and the NIR bands are
available at a 10 m spatial resolution, highly suitable
for application in vegetation canopies. Four red-edge
bands at 20 m spatial resolution are also available
and are particularly suited for chlorophyll content
analysis and to parametrize ecophysiological large-
scale models. Despite its potential, few studies have
evaluated the ability of S2 in forest mapping and
monitoring (Nelson, 2017). Immitzer et al. (2016)
used actual S2 data for forest mapping, but they used
pre-operational data without radiometric and geo-

Figure 1 -  True colour composition of the entire study area from
Sentinel-2 imagery. The Regions of Interest (ROI) have

been labelled in white.

metric corrections, which hampers the comparison
with other datasets. Indeed, the pre-operational data
often showed artifacts which limit the consistency of
the remotely-sensed information available from S2
(Immitzer et al., 2016; Vaiopoulos and Karantzalos,
2016). In addition, because of the relatively recent
release of S2, most previous studies were based on
simulated S2 data (e.g. Hill, 2013; Laurin et al., 2016).

The main objective of this study was to evaluate
the capability of S2 operational data (i.e. after the
correction from ESA) in classifying both forest cat-
egories (pure coniferous forests, pure broadleaves
forests, and mixed forests) and European Forest
Types (EFT, Barbati et al 2014) in a Mediterranean
environment, which has not been possible before
due to limited pre-operational S2 data availability.
Because of the different phenological patterns of
Mediterranean forests, we also compared the use
of multitemporal data versus single time data for
the discrimination of forest categories and types
from S2.

2. Material and methods

2.1. Test site

The study was carried out in an extensive forest
area (about 470 km?) located in the Eastern part of
the Tuscany Region (Figure 1). A Region Of Interest
(ROI) made of 1,061 stands distributed over three
forest compartments (3,960 ha)was created. The
forest types that covered the study area, according
to the European classification (Barbati et al., 2014),
are the Apennine-Corsican mountainous beech for-
ests (EFT code 7.3), the Thermophilous deciduous
forests dominated by chestnut (EFT code 8.7), the
Subalpine and mountainous spruce and mountain-
ous mixed spruce-silver fir forest (EFT code 3.2),
and the Turkey oak, Hungarian oak and Sessile oak
forest (EFT code 8.2), which cover 13.4%, 35.3%,
8.9%, and 38.1% of the forest surface in the AOI,
respectively.

2.2. 82 products collection and pre-processing
Sentinel-2 features 13 spectral bands with 10,
20 and 60 m spatial resolution (Table 1) at 12 bit
radiometric resolution. For the remainder of the
analysis, we focused only on 10 m and 20 m bands
(Table 1). The three 60 m spatial resolution bands
were not used in this study because they are pri-
marily relevant for atmospheric corrections. In
this work, three S2 products were downloaded as
Level-1C Top-of-Atmosphere reflectance products
from the Scientific Hub (https://scihub.copernicus.
eu): one relative to winter (January, 2017, product
code “S2A MSIL1C 20170104T101402 N0204 R022
T32TQP 20170104T101405"), one to spring (March,
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Table1-  Spectral bands available from Sentinel-2. Only bands Table3-  Number of 10x10 m pixels used in this study as ROI for
with finer spatial resolution (i.e. 10 m and 20 m) have forest category classification, distinguished by training
been used in this work. and validation sets.

Sentinel-2 Bands  Central Wavelength Spatial Resolution Forest Forest  Training set Validation set Total number

(wm) m Compartment category  (number) (number) of pixels

Band 1 - Coastal aerosol 0.443 60 Pratomagno  coniferous 24,684 10,579 35,263

Band 2 - Blue 0.490 10 broadleaves 75,230 32,242 107,472

Band 3 - Green 0.560 10 mixed 78,437 33,616 112,053

Band 4 - Red 0.665 10 Rincine coniferous 8,862 3,798 12,660

Band 5- Red Edge 0.705 20 broadleaves 2,770 1,187 3,957

Band 6 - Red Edge 0.740 20 mixed 7,244 3,105 10,349

Band 7 - Red Edge 0.783 20 Vallombrosa  coniferous 25,901 11,100 37,001

Band 8 - NIR 0.842 10 broadleaves 17,003 7,287 24,290

Band 8A - Red Edge 0.865 20 mixed 37,028 15,869 52,897

Band 9 - Water vapour 0.945 60 Total 277,159 118,783 395,942

Band 10 - SWIR - Cirrus 1.375 60

Band 11 - SWIR 1.610 20

Band 12 - SWIR 2.190 20 Table4-  Number of 10x10 m pixels used in this study as ROI for

forest type classification (EFT), distinguished by training

2017 product code “S2A MSIL1C 20170315T101021 and validation sets. EFT 3.2: Subalpine and mountain-

, : . . ;
» ous spruce and mountainous mixed spruce-silver fir

N0204 R022 T32TQP 20170315T101214") and forest; EFT 7.3: Apennine-Corsican mountainous beech

one to summer (June, 2017, product code “S2A forest; EFT 8.2: Turkey oak, Hungarian oak and Sessile

MSILIC 20170613T101031 N0205 R022 T32TQP oak forest; EFT 8.7: Chestnut forest.

20170613T101608”). Training set  Validation set Total number

The products were resampled at a resolution of (number)  (number)  of pixels

10 m by the Sentinel Application Platform (SNAP), EFT3.2 29,336 12,572 41,908
. . . EFT7.3 85,850 36,793 122,643
available at the ESA website (http:/step.esa.int/ EFT 8.2 6.944 2976 9,920
main/toolboxes/snap). Finally, the 10 bands were EFT87 49,935 21,401 71,336
Total 172,065 73,742 245,807

imported in ENVI software, stacked and cropped
over the area of interest.

2.3. Model assessment

The separability between forest categories (pure
coniferous forests, pure broadleaves forests, and
mixed forests) and forest types (EFTs) was evalu-
ated. Firstly, we define the classification ability of
winter, spring and summer products separately using
ten S2 bands resampled at 10 m. Vegetation indices
were also included in a second step of the analysis;
considering the used spectral bands, we computed
the Normalized Difference Vegetation (NDVI), the
Simple Ratio (SRI), the red-edge Normalized Dif-
ference Vegetation (RENDVI) and the Anthocyanin
Reflectance Index 1 (ARI1) indices (Table 2).

As suggested from other experiences (Puletti et
al., 2016; Laurin et al., 2016), a preliminary analysis
on ROIs separability was performed by Jeffries-
Matusita (J-M) distance test applied to the validation
set (see Table 3). The value of the J-M measurement
ranges from 0 to 2.0 and indicates how the selected
ROI pairs are statistically separated: values above
1.8 indicate a statistically good separability (Rich-

Table2 -  The vegetation indices calculated from S2 imagery. p re-
fers to the reflectance value of the S2 band considered.

For the identification of the band number used, see Table

Vegetation Index Formula

NDVI (p542'pses)/ (p842+p665)
SRI Paso! Pses

RENDVI (0749P705)(0746+0765)
AR (1/0550)-(1/0505)

ards and Jia, 1999). As a third step, we repeated the
separability analysis by combining (layer-stack)
the three S2 images, to explore the capability of
S2 to improve the forest type classification using
multitemporal information. All J-M analyses were
performed in ENVI software.

The best configuration obtained from J-M dis-
tance test was used to classify the S2 products
using the Random Forest method (Breiman, 2001).
This method requires two input parameters: the
number of predictor variables performing the data
partitioning at each node and the total number of
trees to be grown in the model run. For categorical
classification based on the Random Forest model,
the number of predictor variables was set as the
square root of the number of predictor within the
dataset used in the study (Liaw and Wiener, 2002).

2.4. Model evaluation

The ROI pixels were randomly divided into
training and validation sets (Table 3 and Table 4),
using a proportion of 70% and 30% respectively. The
classification analysis was performed using the ‘ran-
domForest’ package in R (R Core Team, 2017). The
Random Forest model was built over the training
set; the Overall Accuracy (OA), Producer Accuracy
(PA), User Accuracy (UA) and Kappa coefficient of
the classification were computed using information
from the contingency matrix, obtained applying the
model to the entire validation set (Congalton, 1991).
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Table5-  J-M scores for pairs of forest groups (Con-pure conifers;
Broad-pure broadleaves; Mix-mixed) using single date
and multitemporal S2 imagery.

Input Pair Winter Spring Summer Multitemporal

10 bands Mix vs Con 0.67 0.56 0.47 1.14
Mix vs Broad 1.30 1.562 0.89 1.87
Broad vs Con 1.71 1.83 1.59 1.98

10 bands Mix vs Con 094 177 0.59 1.95

+ NDVI Mix vs Broad 1.32 1.94 1.09 1.97
Broad vs Con 1.80 1.99 1.71 1.99

10 bands Mix vs Con 094 177 0.52 1.92

+ SRl Mix vs Broad 1.31 1.82 0.91 1.94
Broad vs Con 1.80 1.99 1.61 1.99

10 bands Mix vs Con 0.93 1.80 0.58 1.95

+ RENDVI Mix vs Broad 1.32 1.95 1.04 1.98
Broad vs Con 1.80 1.99 1.69 1.99

10 bands Mix vs Con 0.73  0.77 0.52 1.30

+ AR Mix vs Broad 1.33 1.54 0.98 1.88
Broad vs Con 1.77 1.87 1.60 1.98

10 bands Mix vs Con 1.21 1.96 0.69 2.00

+4 Vs Mix vs Broad 1.54 2.00 1.25 2.00
Broad vs Con 1.98 2.00 1.78 2.00

2.5 Map production

The validated model was applied to the entire
study area (470 Km?) and 10 m spatial resolution
maps for both forest categories and EFTs have been
obtained.

3. Results

3.1. J-M test

Results from spring image indicated that the
single image 10 bands discriminated well between
broadleaved and needleleaved forests, regardless
of the phenological acquisition period, but did not
differentiate mixed forests (Table 5). Including
the vegetation indices only slightly increased the
separability between these classes, which was sig-
nificant only for spring image using RENDVI. When
exploiting the multitemporal information of S2, the
J-M separability markedly improved compared with

Table6 -  J-M scores for pairs of selected EFT. EFT 3.2: Subal-
pine and mountainous spruce and mountainous mixed
spruce-silver fir forest; EFT 7.3: Apennine-Corsican
mountainous beech forest; EFT 8.2: Turkey oak, Hungar-
ian oak and Sessile oak forest; EFT 8.7: chestnut forest.

Input Pair J-M score

EFT 3.2

1.98
EFT7.3
EFT 3.2

1.96
EFT 8.2

10 bands (spring) EFT 3.2

+ 1.78

10 bands (summer) EFT 8.7

EFT 7.3

1.98
EFT 8.2
EFT 7.3

1.92
EFT 8.7
EFT 8.2

1.63
EFT 8.7
EFT 3.2

2.00
EFT7.3
EFT 3.2

1.98
EFT 8.2

10 bands + RENDVI (spring) |EFT 3.2

+ 1.88

10 bands + RENDVI (summer) |[EFT 8.7

EFT 7.3

2.00
EFT 8.2
EFT 7.3

1.99
EFT 8.7
EFT 8.2

1.73
EFT 8.7

the single date analysis (Table 5). The solely com-
bination of bands did not allow the discrimination
of the forest categories (J-M value of 1.14 for mixed
vs coniferous, see Table 5), and inclusion of VIs was
therefore required (Table 5).

As described in Figure 2, the same procedure
has been adopted for EFTs classification (Table
6). In this case, due to results obtained in the first

Sentinel 2A image Atmospheric

Resampling to 10
x 10 m (bands 5,6,
7.8a,11,12)
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Figure2 -  Flowchart of the Random Forest methodology implemented in the study.
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Table7 -  Confusion matrix of the best configuration result (see
Table 5) for forest group classification, expressed as
number of pixels of the validation set.

true
pred Pure Pure Mixed
broadleaves coniferous
Pure broadleaves 33,825 526 3,205
Pure coniferous 416 17,383 3,814
Mixed 6,475 7,568 45,571
Table8-  Confusion matrix of the best configuration result (see

Table 6) for EFT classification, expressed as number

of pixels of the validation set. EFT 3.2: Subalpine and
mountainous spruce and mountainous mixed spruce-sil-
ver fir forest; EFT 7.3: Apennine-Corsican mountainous
beech forest; EFT 8.2: Turkey oak, Hungarian oak and
Sessile oak forest; EFT 8.7: Chestnut forest.

true
pred EFT 3.2 EFT7.3 EFT8.2 EFT8.7
EFT 3.2 10,919 943 33 476
EFT7.3 949 34,944 95 776
EFT 8.2 15 26 2,498 120
EFT 8.7 689 880 350 20,029
Table9-  Accuracy by the Random Forest classifier applied to the

validation set of forest groups. CE: Commission Error;
OE: Omission Error; PA: Producer Accuracy; UA: User

Accuracy.
EFT CE (%) OE (%) PA (%) UA (%)
Broadleaves 8.43 12.78 91.47 87.22
Coniferous 15.10 22.26 84.90 77.74
Mixed 16.94 10.49 83.06 89.51

Table 10 -  Accuracy by the Random Forest classifier applied to
the validation set of EFT. CE: Commission Error; OE:
Omission Error; PA: Producer Accuracy; UA: User Ac-
curacy. EFT 3.2: Subalpine and mountainous spruce
and mountainous mixed spruce-silver fir forest; EFT 7.3:
Apennine-Corsican mountainous beech forest; EFT 8.2:
Turkey oak, Hungarian oak and Sessile oak forest; EFT
8.7: Chestnut forest.

EFT CE (%) OE (%) PA (%) UA (%)
EFT 3.2 11.74 13.15 88.26 86.85
EFT7.3 4.95 5.03 95.05 94.97
EFT8.2 6.05 16.06 93.95 83.94
EFT8.7 8.74 6.41 91.26 93.59

step of analysis, only spring and summer images
and relative RENDVI have been used to get best
results based on J-M scores. Results indicated that
the single image bands discriminated well between
all considered EFT with exception for forests domi-
nated by oaks and chestnut (Table 6). The inclusion
of RENDVIimproves the separability between these
EFTs.

The best configuration, respectively made of
33 layers (10 bands for winter, 10 for spring, 10 for
summer, and the 3 RENDVI) and 22 layers (10 for
spring, 10 for summer, and the 2 RENDVI) for forest
categories and EFTs, have been separately used as
input variables in Random Forest.

3.2. Random forest classification
The confusion matrix and accuracy results are
reported in Table 7 and in Table 8. For forest cat-

egories, an overall accuracy of 86.2% and a Kappa
coefficient of 86.1% have been obtained (Table 9).

For EFTs, an overall accuracy of 92.7% and a
Kappa coefficient of 92.6% have been obtained. All
the classes reveal comparable producer accuracy,
although slightly lower user accuracy was observed
in Subalpine and mountainous spruce and moun-
tainous mixed spruce-silver fir forest (Table 10).
However, both the PA and UA are above 83% in all
the classes. A ranking of variables indicated that
the summer bands in Blue, Red-Edge wavelength
are the most important for classification (Figure 3).

The validated models were applied to the entire
study area and both forest categories and EFTs maps
have been produced (Figure 4).

4. Discussion and conclusion

In this study, we demonstrated the effective per-
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winter_B11 °
winter_B7 o
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Random Forest variable importance of S2 bands for EFT
classification.

Figure 3 -

Pure-coniferous EFT 3.2 -Spruce,
- - mixed spruce-silver fir forest
I Pure troadieaves EFT 7.3 - A-C Moun. Beech forest
Mixed
EFT 8.2 - Turkey oak, Hungarian oak

- and Sessile oak forest
[ EFTC &7 - Chestnut forest

Figure 4 -  Forest categories (left) and EFTs (right) maps derived

from models prediction over the study area.
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formance of S2 in forest mapping based on real op-
erational data under Mediterranean forest environ-
ments. We obtained accurate discrimination of EFTs
using a single summer image and VIs. We attributed
the results mainly to the high spatial resolution avail-
able from the 10 m S2 bands and the capability of S2
to include red-edge bands. Indeed, previous studies
indicated that using narrow-bands located in the
red edge can overcome the well-known problem of
saturation of NIR-based vegetation indices (Mutanga
et al., 2004). Thus, the availability of four red-edge
bands in S2 holds great potential to improve the ap-
plicability of optical remote sensing of forests com-
pared with past satellite data (Sellers, 1985; Todd et
al., 1998; Gao et al., 2000; Thenkabail et al., 2000).

At another level, we observed that single im-
age data was not able to significantly discriminate
forests categories nor forest types, unless VIs are
included in the analysis. As expected, the inclusion
of multitemporal data gave best results in the clas-
sification.

The use of ESA corrected images (L1C level)
allows robust S2 product derivation which is pre-
requisite for standardizing the protocol of image
processing and allows comparability among future
studies involving operational S2 data.

We conclude that S2 data have been proved to
be suitable for routine, medium to large scale map-
ping and monitoring of forest changes due to the
combination of high spatial resolution and quick
revisit time.
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